• Title/Summary/Keyword: Bacterial antibiotic resistance

Search Result 213, Processing Time 0.026 seconds

Antibiotic sensitivity and resistance of bacteria from odontogenic maxillofacial abscesses

  • Kang, Sang-Hoon;Kim, Moon-Key
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.45 no.6
    • /
    • pp.324-331
    • /
    • 2019
  • Objectives: This study investigated the types and antibiotic sensitivity of bacteria in odontogenic abscesses. Materials and Methods: Pus specimens from 1,772 patients were collected from affected areas during incision and drainage, and bacterial cultures and antibiotic sensitivity tests were performed. The number of antibiotic-resistant bacteria was analyzed relative to the total number of bacteria that were tested for antibiotic susceptibility. Results: Bacterial cultures from 1,772 patients showed a total of 2,489 bacterial species, 2,101 gram-positive and 388 gram-negative. For penicillin G susceptibility tests, 2 out of 31 Staphylococcus aureus strains tested showed sensitivity and 29 showed resistance. For ampicillin susceptibility tests, all 11 S. aureus strains tested showed resistance. In ampicillin susceptibility tests, 46 out of 50 Klebsiella pneumoniae subsp. pneumoniae strains tested showed resistance. Conclusion: When treating odontogenic maxillofacial abscesses, it is appropriate to use antibiotics other than penicillin G and ampicillin as the first-line treatment.

Mechanisms and Control Strategies of Antibiotic Resistance in Pathological Biofilms

  • Luo, Ying;Yang, Qianqian;Zhang, Dan;Yan, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Bacterial biofilm is a community of bacteria that are embedded and structured in a self-secreted extracellular matrix. An important clinical-related characteristic of bacterial biofilms is that they are much more resistant to antimicrobial agents than the planktonic cells (up to 1,000 times), which is one of the main causes of antibiotic resistance in clinics. Therefore, infections caused by biofilms are notoriously difficult to eradicate, such as lung infection caused by Pseudomonas aeruginosa in cystic fibrosis patients. Understanding the resistance mechanisms of biofilms will provide direct insights into how we overcome such resistance. In this review, we summarize the characteristics of biofilms and chronic infections associated with bacterial biofilms. We examine the current understanding and research progress on the major mechanisms of antibiotic resistance in biofilms, including quorum sensing. We also discuss the potential strategies that may overcome biofilm-related antibiotic resistance, focusing on targeting biofilm EPSs, blocking quorum sensing signaling, and using recombinant phages.

A Study on the Distribution of Antibiotic Resistant Bacteria in Domesticated Animal Feces (가축 분변중의 항생제 내성균주의 분포에 관한 연구)

  • Kwon, Hyuk-Ku;Lee, Jang-Hoon;Kim, Jong-Geu
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.2
    • /
    • pp.142-150
    • /
    • 2012
  • Objectives: To estimate the multi-antibiotic resistant bacterial contaminant load discharged from livestock farms, we randomly selected livestock farms specializing in cattle, swine, and fowl and collected bacterial strains from domesticated animal feces and compost samples. Problems with resistance to antibiotics are becoming worldwide issues, and as the consumption of antibiotics appears to be excessive in Korea as well, the emergence of antibiotic resistant bacteria shows the possibility to cause potentially serious social problems. Methods: To monitor multi-antibiotic resistant bacterial constituents, aerobic bacteria and Escherichia coli were isolated from domesticated animal feces and compost. Antibiotic resistance testing was performed by the disc diffusion method using 13 different antibiotics. Results: Examining the degree of sensitivity to antibiotics of the aerobic bacteria originating from domesticated animal feces, fowl feces showed the highest distribution rate (35.5%), followed by swine feces compost (23.1%), swine feces (18.2%), cattle feces (14.9%), and cattle feces compost (8.2%). Antibiotic resistance tests of aerobic bacteria and E. coli originating from domestic animals feces resulted in 83.6% and 73.5% of each strain showing resistance to more than one antibiotic, respectively. Conclusions: These results suggest that increasing multi-antibiotic resistant bacteria in the environment has a close relation to the reckless use of antibiotics in livestock.

Survey of Antibiotic Resistant Bacteria in Ulleungdo, Korea (울릉도의 항생제 내성균 조사)

  • Jun Hyung Lee;Hye Won Hong;Dukki Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.344-354
    • /
    • 2022
  • BACKGROUND: Although antibiotics have contributed to treatment of bacterial infection, the antibiotic abuse can lead to antibiotic resistant bacteria. Impact of human activities on distribution of antibiotic resistance has been intensively issued and occurrence of antibiotic resistant bacteria in contaminated environments would not be a surprise. Nonetheless, anthropogenic contamination with the dissemination of antibiotic resistance along uncontaminated environments has been less considered. The aim of this study is to investigate antibiotic resistant bacteria across Ulleungdo, known as antibiotic resistance free and anthropogenic pollution free environment in Rep. of Korea. METHODS AND RESULTS: Antibiotic resistant bacteria in coastal seawater of Ulleungdo were investigated in July 2021. Antibiotic susceptibility test using the disk diffusion method was applied with six drugs according to the Clinical and Laboratory Standards Institute (CLSI) guideline. Total 43 bacterial isolates were tested and 20 isolates among of them showed multidrug resistance. Particularly, the number and ratio of resistant bacteria were relatively high in a densely populated area of Ulleungdo. The bacterial communities were investigated using 16S rRNA gene metabarcoding approach in the coastal seawater and soils of Ulleungdo. In the bacterial communities, Firmicutes were selectively distributed only in seawater, suggesting the possibility of anthropogenic contamination in coastal seawater of Ulleungdo. CONCLUSION(S): We found antibiotic resistant bacteria in a populated area of Ulleungdo. The occurrence of antibiotic resistant bacteria in Ulleungdo seems to result from the recent anthropogenic impact. Consistent monitoring of antibiotic resistant bacteria in the uncontaminated environment needs to considered for future risk assessment of antibiotics.

A Review of Studies on Antibiotic Course and Antibiotic Resistance in Nasopharyngeal Pathogens in Primary Care Setting (일차진료 항생제 치료기간과 비인두 항생제 내성률에 대한 연구 고찰)

  • Shin, Hyang Hwa;Lee, Sun Haeng;Yun, Sung Joong;Chang, Gyu Tae
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.32 no.2
    • /
    • pp.64-71
    • /
    • 2018
  • Objectives The purpose of this study is to examine the correlation of antibiotics administration duration and antimicrobial resistance by reviewing domestic and foreign literatures. Methods We searched literatures dated up to 23 February, 2018 in PubMed and Cochrane Library using terms of "Anti-Bacterial Agents", "Carrier State", "Nasopharynx", "Drug Administration Schedule", and also searched via RISS (Research Information Service System), KISS (Koreanstudies Information Service System), DBpia (DataBase Periodical Information Academic) using terms of antibiotics, resistance, and dose. Results In comparison with shortened and standard antibiotic course, longer treatment duration is associated with greater antimicrobial resistance or non-significant difference, but we cannot find literature that shortened antibiotic course increases antimicrobial resistance on human nasopharyngeal flora. Conclusions Currently, there is no evidence that completing the standard antibiotic course reduces antimicrobial resistance. It can be a strategy for reducing antibiotic use to apply Korean medicine treatment, as well as short-course antibiotic therapy or delayed antibiotic prescription. Additional well-designed trials should be conducted in domestic and foreign settings about the appropriate duration of antibiotic therapy.

Functional Metagenome Mining of Soil for a Novel Gentamicin Resistance Gene

  • Im, Hyunjoo;Kim, Kyung Mo;Lee, Sang-Heon;Ryu, Choong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.521-529
    • /
    • 2016
  • Extensive use of antibiotics over recent decades has led to bacterial resistance against antibiotics, including gentamicin, one of the most effective aminoglycosides. The emergence of resistance is problematic for hospitals, since gentamicin is an important broad-spectrum antibiotic for the control of bacterial pathogens in the clinic. Previous study to identify gentamicin resistance genes from environmental samples have been conducted using culture-dependent screening methods. To overcome these limitations, we employed a metagenome-based culture-independent protocol to identify gentamicin resistance genes. Through functional screening of metagenome libraries derived from soil samples, a fosmid clone was selected as it conferred strong gentamicin resistance. To identify a specific functioning gene conferring gentamicin resistance from a selected fosmid clone (35-40 kb), a shot-gun library was constructed and four shot-gun clones (2-3 kb) were selected. Further characterization of these clones revealed that they contained sequences similar to that of the RNA ligase, T4 rnlA that is known as a toxin gene. The overexpression of the rnlA-like gene in Escherichia coli increased gentamicin resistance, indicating that this toxin gene modulates this trait. The results of our metagenome library analysis suggest that the rnlA-like gene may represent a new class of gentamicin resistance genes in pathogenic bacteria. In addition, we demonstrate that the soil metagenome can provide an important resource for the identification of antibiotic resistance genes, which are valuable molecular targets in efforts to overcome antibiotic resistance.

Eradicating Bacterial Persister Cells with Substituted Indoles to Reduce Antibiotic Resistance (항생제 내성률 감소를 위한 퍼시스터 세포 박멸과 인돌의 기능)

  • Park, Garin;Song, Sooyeon
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.4
    • /
    • pp.145-156
    • /
    • 2021
  • Antibiotics are used in many sectors, including the dairy industry, to prevent bacterial infections in humans, animals, and plants. When bacterial cells are exposed to stressors, such as antibiotic exposure, a subpopulation of the cells becomes dormant. This helps the pathogen to revive and reconstitute its pathogenicity. Thus, eradicating the dormant cells may be an effective strategy to reduce the development of antibiotic resistance in bacteria caused by the abuse of antibiotics. In recent years, a large number of indole-related compounds have been reported to eradicate persister cells. In this review, we provide a summary of the mechanisms of persister cell formation and resuscitation, and the ability of indole and substituted indoles to eradicate persister cells.

Comparison of Airborne Bacterial Communities from a Hog Farm and Spray Field

  • Arfken, Ann M.;Song, Bongkeun;Sung, Jung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.709-717
    • /
    • 2015
  • Airborne bacteria from hog farms may have detrimental impacts on human health, particularly in terms of antibiotic resistance and pathogen zoonosis. Despite human health risks, very little is known about the composition and diversity of airborne bacteria from hog farms and hog-related spray fields. We used pyrosequencing analysis of 16S rRNA genes to compare airborne bacterial communities in a North Carolina hog farm and lagoon spray field. In addition, we isolated and identified antibiotic-resistant bacteria from both air samples. Based on 16S rRNA gene pyrosequence analysis, Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria were the dominant phyla in airborne bacterial communities from both hog farm and spray field sites. Within the Firmicutes genera, Clostridium spp. were more abundant in the hog farm, whereas Staphylococcus spp. were higher in the spray field. The presence of opportunitic pathogens, including several Staphylococcus species and Propionibacterium acnes, was detected in both bioaerosol communities based on phylogenetic analysis. The isolation and identification of antibiotic-resistant bacteria from air samples also showed similar results with dominance of Actinobacteria and Proteobacteria in both hog farm and spray field air. Thus, the existence of opportunistic pathogens and antibiotic resistant bacteria in airborne communities evidences potential health risks to farmers and other residents from swine bioaerosol exposure.

Characterization of Plasmids from Multiple Antibiotic Resistant Vibrio sp. Isolated from Molluscs and Crustaceans

  • Manjusha, Sayd;Sarita, Ganabhat Bhat
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.197-207
    • /
    • 2012
  • This study investigated the role of plasmids and their relationship with the multiple antibiotic resistance of 30 Vibrios sp. isolated from molluscs and crustaceans sampled from the Kerala coastal waters of India. The biochemical identification and antibiotic resistance profiles were determined, followed by the plasmid profiles, conjugation and transformation efficiencies. The results showed a considerable difference in the level of bacterial resistance to various antibiotics; while all 30 strains were found to be MAR Vibrios sp. and their resistance patterns varied. All the strains were resistant to amoxycillin, ampicillin and carbeniciliin. 87% were resistant to rifampicin; 74% to cefuroxime; 67 to streptomycin; 53% to norfloxacin and ciprofloxacin and 47% to furazolidone and nalidixic acid. In addition to their antibiotic resistance, the plasmid DNA of the MAR Vibrios strains isolated from the molluscs and crustaceans was also studied. Nine strains isolated from crustaceans and molluscs were found to harbor 1-3 plasmids with sizes varying from 5. 98 kb to 19. 36 kb. The average transformation efficiency was about $5{\times}10^{-8}$ and the conjugation efficiency varied from $2.1{\times}10^{-3}$ to $10^{-9}$. A further study of antibiotic resistance patterns may be useful to test the extent of drug resistance in seafoods and help to devise a nationwide antibiotic policy.

Prevalence of Antibiotic Residues and Antibiotic Resistance in Isolates of Chicken Meat in Korea

  • Lee, Hyo-Ju;Cho, Seung-Hak;Shin, Dasom;Kang, Hui-Seung
    • Food Science of Animal Resources
    • /
    • v.38 no.5
    • /
    • pp.1055-1063
    • /
    • 2018
  • The aim of study was to investigate the correlation between the level of 17 antibiotic residues and 6 antibiotic resistances of Escherichia coli isolates in chicken meats. A total of 58 chicken meats were collected from retail grocery stores in five provinces in Korea. The total detection rate of antibiotic residues was 45% (26 out of 58). Ten out of 17 antibiotics were detected in chicken meats. None of the antibiotics exceeded the maximum residue level (MRLs) in chicken established by the Ministry of Food and Drug Safety (MFDS). The most detected antibiotics were amoxicillin (15.5%), followed by enrofloxacin (12.1%) and sulfamethoxazole (10.3%). In a total of 58 chicken meats, 51 E. coli strains were isolated. E. coli isolates showed the highest resistance to ampicillin (75%), followed by tetracycline (69%), ciprofloxacin (65%), trimethoprim/sulfamethoxazole (41%), ceftiofur (22%), and amoxicillin/clavulanic acid (12%). The results of study showed basic information on relationship between antibiotic residue and resistance for 6 compounds in 13 chicken samples. Further investigation on the antibiotic resistance patterns of various bacteria species is needed to improve food safety.