Browse > Article
http://dx.doi.org/10.22424/jdsb.2021.39.4.145

Eradicating Bacterial Persister Cells with Substituted Indoles to Reduce Antibiotic Resistance  

Park, Garin (Department of Animal Science, Jeonbuk National University)
Song, Sooyeon (Department of Animal Science, Jeonbuk National University)
Publication Information
Journal of Dairy Science and Biotechnology / v.39, no.4, 2021 , pp. 145-156 More about this Journal
Abstract
Antibiotics are used in many sectors, including the dairy industry, to prevent bacterial infections in humans, animals, and plants. When bacterial cells are exposed to stressors, such as antibiotic exposure, a subpopulation of the cells becomes dormant. This helps the pathogen to revive and reconstitute its pathogenicity. Thus, eradicating the dormant cells may be an effective strategy to reduce the development of antibiotic resistance in bacteria caused by the abuse of antibiotics. In recent years, a large number of indole-related compounds have been reported to eradicate persister cells. In this review, we provide a summary of the mechanisms of persister cell formation and resuscitation, and the ability of indole and substituted indoles to eradicate persister cells.
Keywords
antibiotics; persisters; indole; substituted indole;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lewis K. Persister cells. Annu Rev Microbiol. 2010;64:357-372.   DOI
2 Kwan BW, Valenta JA, Benedik MJ, Wood TK. Arrested protein synthesis increases persister-like cell formation. Antimicrob Agents Chemother. 2013;57:1468-1473.   DOI
3 Kudrin P, Varik V, Oliveira SRA, Beljantseva J, Del Peso Santos T, Dzhygyr I, et al. Subinhibitory concentrations of bacteriostatic antibiotics induce relA-dependent and relA-independent tolerance to β-lactams. Antimicrob Agents Chemother. 2017;61:e02173-16.
4 Song S, Wood TK. Post-segregational killing and phage inhibition are not mediated by cell death through toxin/antitoxin systems. Front Microbiol. 2018;9:814.   DOI
5 Dorr T, Vulic M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 2010;8:e1000317.   DOI
6 Wood TK, Song S. Forming and waking dormant cells: the ppGpp ribosome dimerization persister model. Biofilm. 2020;2:100018.   DOI
7 Chowdhury N, Kwan BW, Wood TK. Persistence increases in the absence of the alarmone guanosine tetraphosphate by reducing cell growth. Sci Rep. 2016;6:20519.   DOI
8 Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol. 2017;15:453-464.   DOI
9 Hobby GL, Meyer K, Chaffee E. Observations on the mechanism of action of penicillin. Exp Biol Med. 1942;50:281-285.   DOI
10 Bigger JW. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet. 1944;244:497-500.   DOI
11 Pontes MH, Groisman EA. Slow growth determines nonheritable antibiotic resistance in Salmonella enterica. Sci Signal. 2019;12:eaax3938.   DOI
12 Kaldalu N, Hauryliuk V, Tenson T. Persisters-as elusive as ever. Appl Microbiol Biotechnol. 2016;100:6545-6553.   DOI
13 Hong SH, Wang X, O'Connor HF, Benedik MJ, Wood TK. Bacterial persistence increases as environmental fitness decreases. Microb Biotechnol. 2012;5:509-522.   DOI
14 Kim JS, Chowdhury N, Yamasaki R, Wood TK. Viable but non-culturable and persistence describe the same bacterial stress state. Environ Microbiol. 2018;20:2038-2048.   DOI
15 Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science. 2004;305:1622-1625.   DOI
16 Moker N, Dean CR, Tao J. Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J Bacteriol. 2010;192:1946-1955.   DOI
17 Vega NM, Allison KR, Khalil AS, Collins JJ. Signaling-mediated bacterial persister formation. Nat Chem Biol. 2012;8:431-433.   DOI
18 Lee JH, Cho HS, Kim Y, Kim JA, Banskota S, Cho MH, et al. Indole and 7-benzyloxyindole attenuate the virulence of Staphylococcus aureus. Appl Microbiol Biotechnol. 2013;97:4543-4552.   DOI
19 Lee JH, Wood TK, Lee J. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol. 2015;23:707-718.   DOI
20 Kumar A, Sperandio V. Indole signaling at the host-microbiota-pathogen interface. mBio. 2019;10:e01031-19.
21 Shimada Y, Kinoshita M, Harada K, Mizutani M, Masahata K, Kayama H, et al. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLOS ONE. 2013;8:e80604.   DOI
22 Germain E, Roghanian M, Gerdes K, Maisonneuve E. Retraction for Germain et al., stochastic induction of persister cells by HipA through (p)ppGpp-mediated activation of mRNA endonucleases. Proc Natl Acad Sci USA. 2019;116:11077.   DOI
23 Dantas G, Sommer MOA, Oluwasegun RD, Church GM. Bacteria subsisting on antibiotics. Science. 2008;320:100-103.   DOI
24 Dalebroux ZD, Swanson MS. ppGpp: magic beyond RNA polymerase. Nat Rev Microbiol. 2012;10:203-212.   DOI
25 Shimada T, Yoshida H, Ishihama A. Involvement of cyclic AMP receptor protein in regulation of the rmf gene encoding the ribosome modulation factor in Escherichia coli. J Bacteriol. 2013;195:2212-2219.   DOI
26 Song S, Wood TK. Are we really studying persister cells? Environ Microbiol Rep. 2021;13:3-7.   DOI
27 Bansal T, Alaniz RC, Wood TK, Jayaraman A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci USA. 2010;107:228-233.   DOI
28 Korch SB, Henderson TA, Hill TM. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol Microbiol. 2003;50:1199-1213.   DOI
29 Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science. 2011;334:982-986.   DOI
30 Svenningsen MS, Veress A, Harms A, Mitarai N, Semsey S. Birth and resuscitation of (p)ppGpp induced antibiotic tolerant persister cells. Sci Rep. 2019;9:6056.   DOI
31 Lee J, Jayaraman A, Wood TK. Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol. 2007;7:42.   DOI
32 Frey M, Stettner C, Pare PW, Schmelz EA, Tumlinson JH, Gierl A. An herbivore elicitor activates the gene for indole emission in maize. Proc Natl Acad Sci USA. 2000;97:14801-14806.   DOI
33 Erb M, Veyrat N, Robert CAM, Xu H, Frey M, Ton J, et al. Indole is an essential herbivore-induced volatile priming signal in maize. Nat Commun. 2015;6:6273.   DOI
34 Domka J, Lee J, Bansal T, Wood TK. Temporal gene-expression in Escherichia coli K-12 biofilms. Environ Microbiol. 2007;9:332-346.   DOI
35 Corrigan RM, Bellows LE, Wood A, Grundling A. ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria. Proc Natl Acad Sci USA. 2016;113:E1710-E1719.
36 Gaca AO, Colomer-Winter C, Lemos JA. Many means to a common end: the intricacies of (p)ppGpp metabolism and its control of bacterial homeostasis. J Bacteriol. 2015;197:1146-1156.   DOI
37 Wang B, Dai P, Ding D, Del Rosario A, Grant RA, Pentelute BL, et al. Affinity-based capture and identification of protein effectors of the growth regulator ppGpp. Nat Chem Biol. 2019;15:141-150.   DOI
38 Zhang Y, Zbornikova E, Rejman D, Gerdes K. Novel (p)ppGpp binding and metabolizing proteins of Escherichia coli. mBio. 2018;9:e02188-17.
39 Maisonneuve E, Castro-Camargo M, Gerdes K. Retraction notice to: (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell. 2018;172:1135.   DOI
40 Conlon BP, Rowe SE, Gandt AB, Nuxoll AS, Donegan NP, Zalis EA, et al. Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol. 2016;1:16051.   DOI
41 Goormaghtigh F, Fraikin N, Putrins M, Hallaert T, Hauryliuk V, Garcia-Pino A, et al. Reassessing the role of type II toxin-antitoxin systems in formation of Escherichia coli type II persister cells. mBio. 2018;9:e00640-18.
42 Lee JH, Kim YG, Gwon G, Wood TK, Lee J. Halogenated indoles eradicate bacterial persister cells and biofilms. AMB Express. 2016;6:123.   DOI
43 Domka J, Lee J, Wood TK. YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl Environ Microbiol. 2006; 72:2449-2459.   DOI
44 Lee J, Maeda T, Hong SH, Wood TK. Reconfiguring the quorum-sensing regulator SdiA of Escherichia coli to control biofilm formation via indole and N-acylhomoserine lactones. Appl Environ Microbiol. 2009;75:1703-1716.   DOI
45 Megaw J, Gilmore BF. Archaeal persisters: persister cell formation as a stress response in Haloferax volcanii. Front Microbiol. 2017;8:1589.   DOI
46 Wood TK. Combatting bacterial persister cells. Biotechnol Bioeng. 2016;113:476-483.   DOI
47 Chowdhury N, Wood TL, Martinez-Vazquez M, Garcia-Contreras R, Wood TK. DNAcrosslinker cisplatin eradicates bacterial persister cells. Biotechnol Bioeng. 2016;113:1984-1992.   DOI
48 Yang T, Moreira W, Nyantakyi SA, Chen H, Aziz D, Go ML, et al. Amphiphilic indole derivatives as antimycobacterial agents: structure-activity relationships and membrane targeting properties. J Med Chem. 2017;60:2745-2763.   DOI
49 Bodey GP, Bolivar R, Fainstein V, Jadeja L. Infections caused by Pseudomonas aeruginosa. Rev Infect Dis. 1983;5:279-313.   DOI
50 Prossliner T, Winther KS, Sorensen MA, Gerdes K. Ribosome hibernation. Annu Rev Genet. 2018;52:321-348.   DOI
51 Lin HH, Hsu CC, Yang CD, Ju YW, Chen YP, Tseng CP. Negative effect of glucose on ompA mRNA stability: a potential role of cyclic AMP in the repression of hfq in Escherichia coli. J Bacteriol. 2011;193:5833-5840.   DOI
52 Bubunenko M, Baker T, Court DL. Essentiality of ribosomal and transcription antitermination proteins analyzed by systematic gene replacement in Escherichia coli. J Bacteriol. 2007;189:2844-2853.   DOI
53 Shimada T, Yoshida H, Ishihama A. Involvement of cyclic AMP receptor protein in regulation of the rmf gene encoding the ribosome modulation factor in Escherichia coli. J Bacteriol. 2013;195:2212-2219.   DOI
54 Pu Y, Li Y, Jin X, Tian T, Ma Q, Zhao Z, et al. ATP-dependent dynamic protein aggregation regulates bacterial dormancy depth critical for antibiotic tolerance. Mol Cell. 2019;73:143-156.   DOI
55 Yamasaki R, Song S, Benedik MJ, Wood TK. Persister cells resuscitate using membrane sensors that activate chemotaxis, lower cAMP levels, and revive ribosomes. iScience. 2020;23:100792.   DOI
56 McKay SL, Portnoy DA. Ribosome hibernation facilitates tolerance of stationary-phase bacteria to aminoglycosides. Antimicrob Agents Chemother. 2015;59:6992-6999.   DOI
57 Yamagishi M, Matsushima H, Wada A, Sakagami M, Fujita N, Ishihama A. Regulation of the Escherichia coli rmf gene encoding the ribosome modulation factor: growth phase- and growth rate-dependent control. EMBO J. 1993;12:625-630.   DOI
58 Song S, Wood TK. ppGpp ribosome dimerization model for bacterial persister formation and resuscitation. Biochem Biophys Res Commun. 2020;523:281-286.   DOI
59 Hu Y, Kwan BW, Osbourne DO, Benedik MJ, Wood TK. Toxin YafQ increases persister cell formation by reducing indole signalling. Environ Microbiol. 2015;17:1275-1285.   DOI
60 Zhang YE, Baerentsen RL, Fuhrer T, Sauer U, Gerdes K, Brodersen DE. (p)ppGpp regulates a bacterial nucleosidase by an allosteric two-domain switch. Mol Cell. 2019;74:1239-1249.E4.   DOI
61 Basu A, Yap MNF. Disassembly of the Staphylococcus aureus hibernating 100S ribosome by an evolutionarily conserved GTPase. Proc Natl Acad Sci USA. 2017;114:E8165-E8173.
62 Shcherbakova K, Nakayama H, Shimamoto N. Role of 100S ribosomes in bacterial decay period. Genes Cells. 2015;20:789-801.   DOI
63 Sun F, Bian M, Li Z, Lv B, Gao Y, Wang Y, et al. 5-Methylindole potentiates aminoglycoside against Gram-positive bacteria including Staphylococcus aureus persisters under hypoionic conditions. Front Cell Infect Microbiol. 2020;10:84.   DOI
64 Goormaghtigh F, Van Melderen L. Single-cell imaging and characterization of Escherichia coli persister cells to ofloxacin in exponential cultures. Sci Adv. 2019;5: eaav9462.   DOI
65 Tkachenko AG, Kashevarova NM, Tyuleneva EA, Shumkov MS. Stationary-phase genes upregulated by polyamines are responsible for the formation of Escherichia coli persister cells tolerant to netilmicin. FEMS Microbiol Lett. 2017;364:fnx084.
66 Song S, Gong T, Yamasaki R, Kim JS, Wood TK. Identification of a potent indigoid persister antimicrobial by screening dormant cells. Biotechnol Bioeng. 2019;116:2263-2274.   DOI
67 Kim JS, Yamasaki R, Song S, Zhang W, Wood TK. Single cell observations show persister cells wake based on ribosome content. Environ Microbiol. 2018;20:2085-2098.   DOI
68 Maisonneuve E, Shakespeare LJ, Jorgensen MG, Gerdes K. Retraction for Maisonneuve et al., bacterial persistence by RNA endonucleases. Proc Natl Acad Sci USA. 2018; 115:E2901.
69 El-Sharoud WM, Niven GW. The influence of ribosome modulation factor on the survival of stationary-phase Escherichia coli during acid stress. Microbiology. 2007;153:247-253.   DOI
70 Akiyama T, Williamson KS, Franklin MJ. Expression and regulation of the Pseudomonas aeruginosa hibernation promoting factor. Mol Microbiol. 2018;110:161-175.   DOI
71 Chu W, Zere TR, Weber MM, Wood TK, Whiteley M, Hidalgo-Romano B, et al. Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling. Appl Environ Microbiol. 2012;78:411-419.   DOI
72 Marshall JC, Christou NV, Meakins JL. The gastrointestinal tract the "undrained abscess" of multiple organ failure. Ann Surg. 1993;218:111-119.   DOI
73 Manoharan RK, Mahalingam S, Gangadaran P, Ahn YH. Antibacterial and photocatalytic activities of 5-nitroindole capped bimetal nanoparticles against multidrug resistant bacteria. Colloids Surf B Biointerfaces. 2020;188:110825.   DOI
74 Yam YK, Alvarez N, Go ML, Dick T. Extreme drug tolerance of Mycobacterium abscessus "Persisters". Front Microbiol. 2020;11:359.   DOI
75 Zhang W, Yamasaki R, Song S, Wood TK. Interkingdom signal indole inhibits Pseudomonas aeruginosa persister cell waking. J Appl Microbiol. 2019;127:1768-1775.   DOI
76 Wang D, Ding X, Rather PN. Indole can act as an extracellular signal in Escherichia coli. J Bacteriol. 2001;183:4210-4216.   DOI
77 Kwan BW, Osbourne DO, Hu Y, Benedik MJ, Wood TK. Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole. Biotechnol Bioeng. 2015;112:588-600.   DOI
78 Wood A, Irving SE, Bennison DJ, Corrigan RM. The (p)ppGpp-binding GTPase Era promotes rRNA processing and cold adaptation in Staphylococcus aureus. PLoS Genet. 2019;15:e1008346.   DOI
79 Balaban NQ, Gerdes K, Lewis K, McKinney JD. A problem of persistence: still more questions than answers? Nat Rev Microbiol. 2013;11:587-591.   DOI
80 Masuda Y, Sakamoto E, Honjoh K, Miyamoto T. Role of toxin-antitoxin-regulated persister population and indole in bacterial heat tolerance. Appl Environ Microbiol. 2020;86:e00935-20.
81 Akiyama T, Williamson KS, Schaefer R, Pratt S, Chang CB, Franklin MJ. Resuscitation of Pseudomonas aeruginosa from dormancy requires hibernation promoting factor (PA4463) for ribosome preservation. Proc Natl Acad Sci USA. 2017;114:3204-3209.   DOI
82 Ashok N, Bauer CE. Evidence of defined temporal expression patterns that lead a Gram-negative cell out of dormancy. PLoS Genet. 2020;16:e1008660.   DOI
83 Lee J, Zhang XS, Hegde M, Bentley WE, Jayaraman A, Wood TK. Indole cell signaling occurs primarily at low temperatures in Escherichia coli. ISME J. 2008;2:1007-1023.   DOI
84 Lee J, Bansal T, Jayaraman A, Bentley WE, Wood TK. Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Appl Environ Microbiol. 2007;73:4100-4109.   DOI
85 Lee J, Attila C, Cirillo SLG, Cirillo JD, Wood TK. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microbial Biotechnol. 2009;2:75-90.   DOI
86 Bansal T, Englert D, Lee J, Hegde M, Wood TK, Jayaraman A. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect Immun. 2007;75:4597-4607.   DOI