Browse > Article
http://dx.doi.org/10.4014/jmb.1408.08005

Comparison of Airborne Bacterial Communities from a Hog Farm and Spray Field  

Arfken, Ann M. (Department of Biology and Marine Biology, University of North Carolina Wilmington)
Song, Bongkeun (Department of Biology and Marine Biology, University of North Carolina Wilmington)
Sung, Jung-Suk (Department of Life Science, Dongguk University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.5, 2015 , pp. 709-717 More about this Journal
Abstract
Airborne bacteria from hog farms may have detrimental impacts on human health, particularly in terms of antibiotic resistance and pathogen zoonosis. Despite human health risks, very little is known about the composition and diversity of airborne bacteria from hog farms and hog-related spray fields. We used pyrosequencing analysis of 16S rRNA genes to compare airborne bacterial communities in a North Carolina hog farm and lagoon spray field. In addition, we isolated and identified antibiotic-resistant bacteria from both air samples. Based on 16S rRNA gene pyrosequence analysis, Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria were the dominant phyla in airborne bacterial communities from both hog farm and spray field sites. Within the Firmicutes genera, Clostridium spp. were more abundant in the hog farm, whereas Staphylococcus spp. were higher in the spray field. The presence of opportunitic pathogens, including several Staphylococcus species and Propionibacterium acnes, was detected in both bioaerosol communities based on phylogenetic analysis. The isolation and identification of antibiotic-resistant bacteria from air samples also showed similar results with dominance of Actinobacteria and Proteobacteria in both hog farm and spray field air. Thus, the existence of opportunistic pathogens and antibiotic resistant bacteria in airborne communities evidences potential health risks to farmers and other residents from swine bioaerosol exposure.
Keywords
Hog; swine; antibiotic resistance; bioaerosol; airborne bacteria;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nehme B, Létourneau V, Forster RJ, Veillette M, Duchaine C. 2008. Culture-independent approach of the bacterial bioaerosol diversity in the standard swine confinement building, and assessment of the seasonal effect. Environ. Microbiol. 10: 665-675.   DOI   ScienceOn
2 Wegener HC, Aarestrup FM, Jensen LB, Hammerum AM, Bager F. 1999. Use of antimicrobial growth promoters in food animals and Enterococcus faecium resistance to therapeutic antimicrobial drugs in Europe. Emerg. Infect. Dis. 5: 329-335.   DOI   ScienceOn
3 Wegener HC. 2003. Antibiotics in animal feed and their role in resistance development. Curr. Opin. Microbiol. 6: 439-445.   DOI   ScienceOn
4 Wing S, Wolf S. 2000. Intensive operations, health and quality of life among eastern North Carolina residents. Environ. Health Perspect. 108: 233-242.   DOI
5 Zedja JE, Hurst TS, Rhodes CS, Barber EM, McDuffie HH, Dosman JA. 1993. Respiratory health of swine producers: focus on young workers. Chest 103: 702-709.   DOI   ScienceOn
6 Zedja JE, Barber EM, Dosman JA, Olenchock SA, McDuffie HH, Rhodes CS, Hurst TS. 1994. Respiratory health status in swine producers relates to endotoxin exposure in the presence of low dust levels. J. Occup. Med. 36: 49-56.
7 Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
8 Predicala BZ, Urban JE, Maghirang RG, Jereze SB, Goodband RD. 2002. Assessment of bioaerosols in swine barns by filtration and impaction. Curr. Microbiol. 44: 136-140.   DOI
9 Ravva SV, Sarreal CZ, Mandrell RE. 2011. Bacterial communities in aerosols and manure samples from two different dairies in Central and Sonoma Valleys of California. PLoS One 6: e17281.   DOI   ScienceOn
10 Rintala H, Pitkaranta M, Toivola M, Paulin L, Nevalainen A. 2008. Diversity and seasonal dynamics of bacterial community in indoor environment. BMC Microbiol. 8: 56.   DOI   ScienceOn
11 Smith TC, Harper AL, Nair R, Wardyn SE, Hanson BM, Ferguson DD, Dressler AE. 2011. Emerging swine zoonoses. Vector Borne Zoonotic Dis. 11: 1225-1234.   DOI   ScienceOn
12 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.   DOI   ScienceOn
13 Von Essen S, Scheppers L, Robbins R, Donham K. 1998. Respiratory tract inflammation in swine confinement workers studied using induced sputum and exhaled nitric oxide. Clin. Toxicol. 36: 557-565.   DOI   ScienceOn
14 Webster GF, Ruggieri MR, McGinley KJ. 1981. Correlation of Propionibacterium-acnes populations with the presence of triglycerides on nonhuman skin. Appl. Environ. Microbiol. 41: 1269-1270.
15 Gilchrist MJ, Greko C, Walling DB, Beran GW, Riley DG, Thorne PS. 2007. The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environ. Health Perspect. 115: 313-316.   DOI   ScienceOn
16 Kelly WJ, Asmundson RV, Hopcroft DH. 1987. Isolation and characterization of strictly anaerobic, cellulolytic spore former: Clostridium chartatabidum sp. nov. Arch. Microbiol. 147: 169-173.   DOI
17 Holness DL, O’Blenis EL, Sass-Kortsak A, Pilger C, Nethercott JR. 1987. Respiratory effects and dust exposures in hog confinement farming. Am. J. Ind. Med. 11: 571-580.   DOI   ScienceOn
18 Hong P-Y, Li X, Yang X, Shinkai T, Zhang Y, Wang X, Mackie R. 2012. Monitoring airborne biotic contaminants in the indoor environment of pig and poultry confinement buildings. Environ. Microbiol. 14: 1420-1431.   DOI   ScienceOn
19 Jensen LB, Hammerum AM, Bager F, Aarestrup FM. 2002. Streptogramin resistance among Enterococcus faecium isolated from production animals in Denmark in 1997. Microb. Drug Resist. 8: 369-374.   DOI   ScienceOn
20 Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.   DOI
21 Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Moller K. 2002. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisted. Appl. Environ. Microbiol. 68: 673-690.   DOI
22 Leung K, Topp E. 2001. Bacterial community dynamics in liquid swine manure storage: molecular analysis using DGGE/PCR of 16S rDNA. FEMS Microbiol. Ecol. 38: 169-177.   DOI
23 Millner PD. 2009. Bioaerosols associated with animal production operations. Bioresour. Technol. 100: 5379-5385.   DOI   ScienceOn
24 de Evgrafov MR, Kõll P, Frank DN, Baumgartner LK, Robertson CE, Hernández MT, Pace NR. 2013. Molecular analysis of bacterial and circovirus bioaerosols in concentrated animal feeding operations. Aerosol Sci. Technol. 47: 755-766.   DOI
25 Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-200.   DOI   ScienceOn
26 DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72: 5069-5072.   DOI   ScienceOn
27 Donham K, Haglind P, Peterson Y, Rylander R, Belin L. 1989. Environmental and health studies of farm workers in Swedish swine confinement buildings. Br. J. Ind. Med. 46: 31-37.
28 FDA (Food and Drug Administration). 2004. FDA Approved Animal Drug Products. Drug Information Laboratory, Virginia/Maryland Regional College of Veterinary Medicine.
29 Duchaine C, Grimard Y, Cormier Y. 2000. Influence of building maintenance, environmental factors, and seasons on airborne contaminants of swine confinement buildings. Am. Ind. Hyg. Assoc. J. 61: 56-63.   DOI
30 Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.   DOI   ScienceOn
31 Franzetti A, Gandolfi I, Gaspari E, Ambrosini R, Bestetti G. 2011. Seasonal variability of bacteria in fine and coarse urban air particulate matter. Environ. Biotechnol. 90: 745-753.   DOI
32 Chapin A, Rule A, Gibson K, Buckley T, Schwab K. 2005. Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation. Environ. Health Perspect. 113: 137-141.
33 Cole D, Todd L, Wing S. 2000. Concentrated swine feeding operations and public health: a review of occupational and community health effects. Environ. Health Perspect. 108: 685-699.   DOI
34 Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin Y-F, Yannarell AC, et al. 2009. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J. Environ. Qual. 38: 1086-1108.   DOI   ScienceOn
35 Chien Y-C, Chen C-J, Lin T-H, Chen S-H, Chien Y-C. 2011. Characteristics of microbial aerosols released from chicken and swine feces. J. Air Waste Manage. Assoc. 61: 882-889.   DOI
36 Clark S, Rylander R, Larsson L. 1983. Airborne bacteria, endotoxin and fungi in dust in poultry and swine confinement buildings. Am. Ind. Hyg. Assoc. J. 44: 537-541.   DOI   ScienceOn
37 Aarestrup FM, Kruse H, Tast E, Hammerum AM, Jensen LB. 2000. Associations between the use of antimicrobial agents for growth promotion and the occurrence of resistance among Enterococcus faecium from broilers and pigs in Denmark, Finland, and Norway. Microb. Drug Resist. 6: 63-70.   DOI   ScienceOn
38 Cormier Y, Tremblay G, Meriaux A, Brochu G, Lavoie J. 1990. Airborne microbial contents in two types of swine confinement buildings in Quebec. Am. Ind. Hyg. Assoc. J. 51: 304-309.   DOI   ScienceOn
39 Crook B, Robertson JF, Glass SA, Botheroyd EM, Lacey J, Topping MD. 1991. Airborne dust, ammonia, microorganisms, and antigens in pig confinement houses and the respiratory health of exposed farm workers. Am. Ind. Hyg. Assoc. J. 52: 271-279.   DOI   ScienceOn
40 Cruz AT, Cazacu AC, Allen CH. 2007. Pantoea agglomerans, a plant pathogen causing human disease. J. Clin. Microbiol. 45: 1989-1992.   DOI   ScienceOn
41 Bowers RM, McLetchie S, Knight R, Fierer N. 2011. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J. 5: 601-612.   DOI
42 Amann RI, Ludwig W, Schleifer K-H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Mol. Biol. Rev. 59: 143-169.
43 Angenent LT, Kelley ST, Amand A, Pace NR, Hernandez MT. 2005. Molecular identification of potential pathogens in water and air of hospital therapy pool. Proc. Natl. Acad. Sci. USA 102: 4860-4865.   DOI   ScienceOn
44 Bager F, Madsen M, Christensen J, Aarestrup FM. 1997. Avoparcin used as a growth promoter is associated with the occurrence of vancomycin-resistant Enterococcus faecium on Danish poultry and pig farms. Prev. Vet. Med. 31: 95-112.   DOI   ScienceOn
45 Aarestrup FM, Agerso Y, Gerner-Smidt P, Madsen M, Jensen LB. 2000. Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn. Microbiol. Infect. Dis. 37: 127-137.   DOI   ScienceOn
46 Bragg L, Stone G, Imelfort M, Hugenholtz P, Tyson GW. 2012. Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nat. Methods 9: 425-426.   DOI   ScienceOn
47 Bruggemann H, Henne A, Holster F, Liesegang H, Wiezer A, Strittmatter A, et al. 2004. The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science 305: 671-673.   DOI   ScienceOn
48 Capiraso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336.   DOI   ScienceOn
49 Gibbs SG, Green CF, Tarwater PM, Mota LC, Mena KD, Scarpino PV. 2006. Isolation of antibiotic-resistant bacteria from the air plume downwind of a swine confined or concentrated animal feeding operation. Environ. Health Perspect. 114: 1032-1037.   DOI   ScienceOn