• Title/Summary/Keyword: Bacterial Release

Search Result 125, Processing Time 0.021 seconds

A Study on the Protective Effects of Polygalae Radix on Neurotoxicity Induced by N-methyl-D-aspartic acid(NMDA) (원지(遠志)가 NMDA로 유발된 선경세포 손상에 미치는 효과)

  • Lee, Soo-Bae;Seong, Nak-Sul;Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.20 no.2
    • /
    • pp.115-125
    • /
    • 2005
  • Objectives : Polygalae Radix (PR) from Polygalae tenuifolia (Polygalaceae) has been clinically used as a sedative, anti-inflammatory, and anti-bacterial agent. To extend pharmacological effects of PR in the central nervous system (CNS) on the basis of its CNS protective effect, the present study was conducted to identify the effect of PR, whether it shows the neuroprotective action against excitatory neurotoxicity. Methods : To identify the protective effect of PR to excitatory neuro-toxic agent, the present study was focused on the PR effect on cell death, that was caused by applying NMDA to nerve cell, elevation of $(Ca^{2+})_i$, releasement of glutamate, and ROS generation. Result : 1. PR methanol extract, at the concentration range of 0.05 to 5 g/ml, significantly inhibited NMDA (1 mM)-induced neuronal cell death as well as MK-801 (non competitive NMDA antagonist). 2. PR methanol extract $(0.5\;{\mu}g/ml)$ inhibited NMDA (1 mM)-induced elevation of cytosolic calcium concentration $[Ca^{2+}]_i$. NMDA application in the presence of MK-801 $(10\;{\mu}M)$ failed to produce the increase of $[Ca^{2+}]_i$ through all the measurement time. 3. PR methanol extract $(0.5\;{\mu}g/ml)$ inhibited the NMDA-induced elevation of glutamate release. Also, MK-801 showed similar protective effects. 4. PR methanol extract $(0.5\;{\mu}g/ml)$ inhibited the NMDA-induced elevation of ROS generation. Also, MK-801 showed similar protective effects. Conclusion : The present study provides the availability of PR to exert its protective effect on the neuronal cell death in various neurodegenerative pathophysiological conditions.

  • PDF

Ecotoxicological Evaluation of Sewage Sludge Using Bioluminescent Marine Bacteria and Rotifer

  • Park, Gyung-Soo;Chung, Chang-Soo;Lee, Sang-Hee;Hong, Gi-Hoon;Kirn, Suk-Hyun;Park, Soung-Yun;Yoon, Seong-Jin;Lee!, Seung-Min
    • Ocean Science Journal
    • /
    • v.40 no.2
    • /
    • pp.91-100
    • /
    • 2005
  • Bioassay using the marine bacteria, Vibrio fischeri and rotifer, Brachionus plicatilis, and chemical analyses were conducted to assess the toxicity of the various sewage sludges, one of the major ocean dumped materials in the Yellow Sea of Korea. Sludge elutriates extracted by filtered seawater were used to estimate the ecotoxicity of the sludge. Chemical characterization included the analyses of organic contents, heavy metals, and persistent organic pollutants in sludge. Bacterial bioluminescent inhibition (15 min), rotifer mortality (24 hr) and rotifer population growth inhibition (48 hr) assay were conducted to estimate the sludge toxicity. EC50 15 min (inhibition concentration of bioluminescence after 15 minutes exposed) values by Microtox(R) bioassay clearly revealed different toxicity levels depending on the sludge sources. Highest toxicity for the bacteria was found with the sludge extract from dyeing waste and followed by industrial waste, livestock waste, and leather processing waste. Clear toxic effects on the bacteria were not found in the sludge extract from filtration bed sludge and rural sewage sludge. Consistent with Microtox(R) results, rotifer neonate mortality and population growth inhibition test also showed highest toxicity in dyeing waste and low in filtration bed and rural sewage sludge. High concentrations of persistent organic pollutants (POPs) and heavy metals were measured in the samples from the industrial wastes, leather processing plant waste sludge, and urban sewage sludge. However, there was no significant correlation between pollutant concentration levels and the toxicity values of the sludge. This suggests that the ecotoxicity in addition to the chemical analyses of various sludge samples must be estimated before release of potential harmful waste in the natural environment as part of an ecological risk assessment.

Protein Kinase $C-{\alpha}$ Regulates Toll-like Receptor 4-Mediated Inducible Nitric Oxide Synthase Expression

  • Lee, Jin-Gu;Chin, Byung-Rho;Baek, Suk-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.1
    • /
    • pp.28-35
    • /
    • 2008
  • Purpose: The nitric oxide (NO) release by inducible nitric oxide synthase (iNOS) is the key events in macrophage response to lipopolysaccharide (LPS) which is suggested to be a crucial mediator for inflammatory and innate immune responses. NO is an important mediator involved in many host defense action and may also lead to a harmful host response to bacterial infection. However, given the importance of iNOS in a variety of pathophysiological conditions, control of its expression and signaling events in response to LPS has been the subject of considerable investigation. Materials and Methods: The Raw264.7 macrophage cell line was used to observe LPS-stimulated iNOS expression. The expression of iNOS is observed by Western blot analysis and real-time RT-PCR. Protein kinase C $(PKC)-{\alpha}$ overexpressing Raw264.7 cells are established to determine the involvement of $PKC-{\alpha}$ in LPS-mediated iNOS expression. $NF-{\kappa}B$ activity is measured by $I{\kappa}B{\alpha}$ degradation and $NF-{\kappa}B$ luciferase activity assay. Results: We found that various PKC isozymes regulate LPS-induced iNOS expression at the transcriptional and translational levels. The involvement of $PKC-{\alpha}$ in LPS-mediated iNOS induction was further confirmed by increased iNOS expression in $PKC-{\alpha}$ overexpressing cells. $NF-{\kappa}B$ dependent transactivation by LPS was observed and $PKC-{\alpha}$ specific inhibitory peptide abolished this activation, indicating that $NF-{\kappa}B$ activation is dependent on $PKC-{\alpha}$. Conclusion: Our data suggests that $PKC-{\alpha}$ is involved in LPS-mediated iNOS expression and that its downstream target is $NF-{\kappa}B$. Although $PKC-{\alpha}$ is a crucial mediator in the iNOS regulation, other PKC isozymes may contribute LPS-stimulated iNOS expression. This finding is needed to be elucidated in further study.

Antibacterial and remineralization effects of orthodontic bonding agents containing bioactive glass

  • Kim, You-Min;Kim, Dong-Hyun;Song, Chang Weon;Yoon, Seog-Young;Kim, Se-Yeon;Na, Hee Sam;Chung, Jin;Kim, Yong-Il;Kwon, Yong Hoon
    • The korean journal of orthodontics
    • /
    • v.48 no.3
    • /
    • pp.163-171
    • /
    • 2018
  • Objective: The aim of this study was to evaluate the mechanical and biological properties of orthodontic bonding agents containing silver- or zinc-doped bioactive glass (BAG) and determine the antibacterial and remineralization effects of these agents. Methods: BAG was synthesized using the alkali-mediated solgel method. Orthodontic bonding agents containing BAG were prepared by mixing BAG with flowable resin. $Transbond^{TM}$ XT (TXT) and $Charmfil^{TM}$ Flow (CF) were used as controls. Ion release, cytotoxicity, antibacterial properties, the shear bond strength, and the adhesive remnant index were evaluated. To assess the remineralization properties of BAG, micro-computed tomography was performed after pH cycling. Results: The BAG-containing bonding agents showed no noticeable cytotoxicity and suppressed bacterial growth. When these bonding agents were used, demineralization after pH cycling began approximately 200 to $300{\mu}m$ away from the bracket. On the other hand, when CF and TXT were used, all surfaces that were not covered by the adhesive were demineralized after pH cycling. Conclusions: Our findings suggest that orthodontic bonding agents containing silver- or zinc-doped BAG have stronger antibacterial and remineralization effects compared with conventional orthodontic adhesives; thus, they are suitable for use in orthodontic practice.

Free Living Amoeba-Bacteria Interactions: Analysis of Escherichia coli Interactions with Nonpathogenic or Pathogenic Free Living Amoeba

  • Jung, Suk-Yul
    • Biomedical Science Letters
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • Free-living amoebae ingest several kinds of bacteria. In other words, the bacteria can survive within free-living amoeba. To determine how Escherichia coli K1 isolate causing neonatal encephalitis and non-pathogenic K12 interact with free-living amoebae, e.g., Acanthamoeba castellanii (T1), A. astronyxis (T7), Naegleria fowleri, association, invasion and survival assays were performed. To understand pathogenicity of free-living amoebae, in vitro cytotoxicity assay were performed using murine macrophages. T1 destroyed macrophages about 64% but T7 did very few target cells. On the other hand, N. fowleri which needed other growth conditions rather than Acanthamoeba destroyed more than T1 as shown by lactate dehydrogenase (LDH) release assay. In association assays for E. coli binding to amoebae, the T7 exhibited significantly higher association with E. coli, compared with the T1 isolates (P<0.01). Interestingly, N. fowleri exhibited similar percentages of association as T1. Once E. coli bacteria attach or associate with free-living amoeba, they can penetrate into the amoebae. In invasion assays, the K1 (0.67%) within T1 was observed compared with K12 (0%). E. coli K1 and K12 exhibited high association with N. fowleri and bacterial CFU. To determine the fate of E. coli in long-term survival within free-living amoebae, intracellular survival assays were performed by incubating E. coli with free-living amoebae in PBS for 24 h. Intracellular E. coli K1 within T1 (2.5%) and T7 (1.8%) were recovered and grown, while K12 were not found. N. fowleri was not invaded and here it was not recovered.

ANTIBACTERIAL EFFECT OF POLYPHOSPHATE ON ENDODONTOPATHIC BACTERIA (근관감염균에 대한 polyphosphate의 항균효과)

  • Shin, Jeong-Hee;Park, Sang-Jin;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.6
    • /
    • pp.435-448
    • /
    • 2003
  • This study was performed to observe the antibacterial effect of polyphosphate (polyP) with various chain lengths (P3~P75) on virulent. invasive strains of P. gingivalis A7A1-28 and W50, and multidrug resistant E. faecalis ATCC29212. P. gingivalis strains were grown in brain-heart infusion broth (BHI) containing hemin and vitamin K with or without polyP. PolyP was added at the very beginning of the culture or during the exponential growth phase of the culture. Inhibition of the growth of P. gingivalis was determined by measuring the absorbancy at 540nm of the grown cells. Viable cell counts of the culture and release of intracellular nucleotide from P. gingivalis were measured. E. faecalis was grown in plain BHI with antibiotics alone or in combination with polyP(calgon: 0.1~1.0%) and the bacterial absorbancy was measured. The overall results suggest that polyP has a strong antibacterial effect on the growth of the virulent strains of P. gingivalis and the antibacterial activity of polyP seems largely bactericidal. accompanying bacteriolysis in which chelation phenomenon is not involved. Although polyP does not exert antibacterial activity against E. faecalis, it appears to increase antibacterial effect of erythromycin and tetracycline on the bacterium. Therefore, polyP alone or in combination with antibiotics may be developed as a candidate for the agent controlling oral infections including endodontic infection.

Polysaccharide-based superhydrophilic coatings with antibacterial and anti-inflammatory agent-delivering capabilities for ophthalmic applications

  • Park, Sohyeon;Park, Joohee;Heo, Jiwoong;Lee, Sang-Eun;Shin, Jong-Wook;Chang, Minwook;Hong, Jinkee
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.229-237
    • /
    • 2018
  • Medical silicone tubes are generally used as implants for the treatment of nasolacrimal duct stenosis. However, side effects such as allergic reactions and bacterial infections have been reported following the silicone tube insertion, which cause surgical failure. These drawbacks can be overcome by modifying the silicone tube surface using a functional coating. Here, we report a biocompatible and superhydrophilic surface coating based on a polysaccharide multilayer nanofilm, which can load and release antibacterial and anti-inflammatory agents. The nanofilm is composed of carboxymethylcellulose (CMC) and chitosan (CHI), and fabricated by layer-by-layer (LbL) assembly. The LbL-assembled CMC/CHI multilayer films exhibited superhydrophilic properties, owing to the rough and porous structure obtained by a crosslinking process. The surface coated with the superhydrophilic CMC/CHI multilayer film initially exhibited antibacterial activity by preventing the adhesion of bacteria, followed by further enhanced antibacterial effects upon releasing the loaded antibacterial agent. In addition, inflammatory cytokine assays demonstrated the ability of the coating to deliver anti-inflammatory agents. The versatile nanocoating endows the surface with anti-adhesion and drug-delivery capabilities, with potential applications in the biomedical field. Therefore, we attempted to coat the nanofilm on the surface of an ophthalmic silicone tube to produce a multifunctional tube suitable for patient-specific treatment.

Enzymes and Their Reaction Mechanisms in Dimethylsulfoniopropionate Cleavage and Biosynthesis of Dimethylsulfide by Marine Bacteria

  • Do, Hackwon;Hwang, Jisub;Lee, Sung Gu;Lee, Jun Hyuck
    • Journal of Marine Life Science
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • In marine ecosystems, the biosynthesis and catabolism of dimethylsulfoniopropionate (DMSP) by marine bacteria is critical to microbial survival and the ocean food chain. Furthermore, these processes also influence sulfur recycling and climate change. Recent studies using emerging genome sequencing data and extensive bioinformatics analysis have enabled us to identify new DMSP-related genes. Currently, seven bacterial DMSP lyases (DddD, DddP, DddY, DddK, DddL, DddQ and DddW), two acrylate degrading enzymes (DddA and DddC), and four demethylases (DmdA, DmdB, DmdC, and DmdD) have been identified and characterized in diverse marine bacteria. In this review, we focus on the biochemical properties of DMSP cleavage enzymes with special attention to DddD, DddA, and DddC pathways. These three enzymes function in the production of acetyl coenzyme A (CoA) and CO2 from DMSP. DddD is a DMSP lyase that converts DMSP to 3-hydroxypropionate with the release of dimethylsulfide. 3-Hydroxypropionate is then converted to malonate semialdehyde by DddA, an alcohol dehydrogenase. Then, DddC transforms malonate semialdehyde to acetyl-CoA and CO2 gas. DddC is a putative methylmalonate semialdehyde dehydrogenase that requires nicotinamide adenine dinucleotide and CoA cofactors. Here we review recent insights into the structural characteristics of these enzymes and the molecular events of DMSP degradation.

Potential immune-modulatory effects of wheat phytase on the performance of a mouse macrophage cell line, Raw 264.7, exposed to long-chain inorganic polyphosphate

  • An, Jeongmin;Cho, Jaiesoon
    • Animal Bioscience
    • /
    • v.34 no.3_spc
    • /
    • pp.463-470
    • /
    • 2021
  • Objective: This experiment was conducted to find out the immunological effects of wheat phytase when long-chain inorganic polyphosphate (polyP) treated with wheat phytase was added to a macrophage cell line, Raw 264.7, when compared to intact long-chain polyP. Methods: Nitric oxide (NO) production of Raw 264.7 cells exposed to P700, a long-chain polyP with an average of 1,150 phosphate residues, treated with or without wheat phytase, was measured by Griess method. Phagocytosis assay of P700 treated with or without phytase in Raw 264.7 cells was investigated using neutral red uptake. The secretion of tumor necrosis factor α (TNF-α) by Raw 264.7 cells with wheat phytase-treated P700 compared to intact P700 was observed by using Mouse TNF-α enzyme-linked immunosorbent assay kit. Results: P700 treated with wheat phytase effectively increased NO production of Raw 264.7 cells by 172% when compared with intact P700 at 12 h exposure. At 5 mM of P700 concentration, wheat phytase promoted NO production of macrophages most strongly. P700, treated with wheat phytase, stimulated phagocytosis in macrophages at 12 h exposure by about 1.7-fold compared to intact P700. In addition, P700 treated with wheat phytase effectively increased in vitro phagocytic activity of Raw 264.7 cells at a concentration above 5 mM when compared to intact P700. P700 dephosphorylated by wheat phytase increased the release of TNF-α from Raw 264.7 cells by 143% over that from intact P700 after 6 h exposure. At the concentration of 50 μM P700, wheat phytase increased the secretion of cytokine, TNF-α, by 124% over that from intact P700. Conclusion: In animal husbandry, wheat phytase can mitigate the long-chain polyP causing damage by improving the immune capabilities of macrophages in the host. Thus, wheat phytase has potential as an immunological modulator and future feed additive for regulating immune responses caused by inflammation induced by long-chain polyP from bacterial infection.

Microencapsulated basil oil (Ocimum basilicum Linn.) enhances growth performance, intestinal morphology, and antioxidant capacity of broiler chickens in the tropics

  • Thuekeaw, Sureerat;Angkanaporn, Kris;Nuengjamnong, Chackrit
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.752-762
    • /
    • 2022
  • Objective: Microencapsulation is a technique to improve stability, bioavailability, and controlled release of active ingredients at a target site. This experiment aimed to investigate the effects of microencapsulated basil oil (MBO) on growth performance, apparent ileal digestibility (AID), jejunal histomorphology, bacterial population as well as antioxidant capacity of broiler chickens in a tropical climate. Methods: A total of 288 one-day-old female broilers (Ross 308) were randomly allocated into 4 groups (6 replicates of 12 birds), based on a completely randomized design. Dietary treatments were as follows: i) basal diet (NC), ii) basal diet with avilamycin at 10 ppm (PC), iii) basal diet with free basil oil (FBO) at 500 ppm, and iv) basal diet with MBO at 500 ppm, respectively. Results: Dietary supplementation of MBO improved average daily gain, and feed conversion ratio of broilers throughout the 42-d trial period (p<0.05), whereas MBO did not affect average daily feed intake compared with NC group. The broilers fed MBO diet exhibited a greater AID of crude protein and gross energy compared with those in other groups (p<0.05). Lactobacillus spp. and Escherichia coli populations were not affected by feeding dietary treatments. Both FBO and MBO had positive effects on jejunal villus height (VH), villus height to crypt depth ratio (VH:CD) and villus surface area of broilers compared to NC and PC groups (p<0.05). Superoxide dismutase level in the duodenal mucosa of MBO group was significantly increased (p<0.01), whereas malondialdehyde level was significantly decreased (p<0.01). Conclusion: Microencapsulation could be considered as a promising driver of the basil oil efficiency, consequently MBO at 500 ppm could be potentially used as a feed additive for improvement of intestinal integrity and nutrient utilization, leading to better performance of broiler chickens.