DOI QR코드

DOI QR Code

Polysaccharide-based superhydrophilic coatings with antibacterial and anti-inflammatory agent-delivering capabilities for ophthalmic applications

  • Park, Sohyeon (Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University) ;
  • Park, Joohee (Department of Ophthalmology, Dongguk University Ilsan Hospital) ;
  • Heo, Jiwoong (Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University) ;
  • Lee, Sang-Eun (Department of Internal Medicine, Chung-Ang University College and School of Medicine, Chung-Ang University Hospital) ;
  • Shin, Jong-Wook (Department of Internal Medicine, Chung-Ang University College and School of Medicine, Chung-Ang University Hospital) ;
  • Chang, Minwook (Department of Ophthalmology, Dongguk University Ilsan Hospital) ;
  • Hong, Jinkee (Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University)
  • 투고 : 2018.06.29
  • 심사 : 2018.07.28
  • 발행 : 2018.12.25

초록

Medical silicone tubes are generally used as implants for the treatment of nasolacrimal duct stenosis. However, side effects such as allergic reactions and bacterial infections have been reported following the silicone tube insertion, which cause surgical failure. These drawbacks can be overcome by modifying the silicone tube surface using a functional coating. Here, we report a biocompatible and superhydrophilic surface coating based on a polysaccharide multilayer nanofilm, which can load and release antibacterial and anti-inflammatory agents. The nanofilm is composed of carboxymethylcellulose (CMC) and chitosan (CHI), and fabricated by layer-by-layer (LbL) assembly. The LbL-assembled CMC/CHI multilayer films exhibited superhydrophilic properties, owing to the rough and porous structure obtained by a crosslinking process. The surface coated with the superhydrophilic CMC/CHI multilayer film initially exhibited antibacterial activity by preventing the adhesion of bacteria, followed by further enhanced antibacterial effects upon releasing the loaded antibacterial agent. In addition, inflammatory cytokine assays demonstrated the ability of the coating to deliver anti-inflammatory agents. The versatile nanocoating endows the surface with anti-adhesion and drug-delivery capabilities, with potential applications in the biomedical field. Therefore, we attempted to coat the nanofilm on the surface of an ophthalmic silicone tube to produce a multifunctional tube suitable for patient-specific treatment.

키워드

과제정보

연구 과제 주관 기관 : Korea Health Industry Development Institute (KHIDI), National Research Foundation of Korea (NRF), Yonsei University

참고문헌

  1. D.J. Kim, J.-H. Park, M. Chang, BMC Ophthalmol. 18 (2018) 85. https://doi.org/10.1186/s12886-018-0750-1
  2. S.H. Kim, C.Y. Park, S.W. Hwang, M. Chang, J. Craniofac. Surg. 29 (2018) 462.
  3. J. Huang, J. Malek, D. Chin, K. Snidvongs, G. Wilcsek, K. Tumuluri, R. Sacks, R.J. Harvey, Orbit 33 (2014) 81. https://doi.org/10.3109/01676830.2013.842253
  4. K.K. Chong, F.H. Lai, M. Ho, A. Luk, B.W. Wong, A. Young, Ophthalmology 120 (2013) 2139. https://doi.org/10.1016/j.ophtha.2013.02.036
  5. C. Xie, L. Zhang, Y. Liu, H. Ma, S. Li, Sci. Rep. 7 (2017) 1936. https://doi.org/10.1038/s41598-017-02070-y
  6. J. Min, K.Y. Choi, E.C. Dreaden, R.F. Padera, R.D. Braatz, M. Spector, P.T. Hammond, ACS Nano 10 (2016) 4441. https://doi.org/10.1021/acsnano.6b00087
  7. H.-J. Jian, R.-S. Wu, T.-Y. Lin, Y.-J. Li, H.-J. Lin, S.G. Harroun, J.-Y. Lai, C.-C. Huang, ACS Nano 11 (2017) 6703. https://doi.org/10.1021/acsnano.7b01023
  8. Y. Goldfinger, M. Natan, C.N. Sukenik, E. Banin, J. Kronenberg, Cochlear Implants Int. 15 (2014) 173. https://doi.org/10.1179/1754762813Y.0000000061
  9. H. Yang, G. Li, J.W. Stansbury, X. Zhu, X. Wang, J. Nie, ACS Appl. Mater. Interfaces 8 (2016) 28047. https://doi.org/10.1021/acsami.6b09343
  10. A. Tiraferri, Y. Kang, E.P. Giannelis, M. Elimelech, Environ. Sci. Technol. 46 (2012) 11135. https://doi.org/10.1021/es3028617
  11. Y. Lai, Y. Tang, J. Gong, D. Gong, L. Chi, C. Lin, Z. Chen, J. Mater. Chem. 22 (2012) 7420. https://doi.org/10.1039/c2jm16298a
  12. X.-Q. Dou, D. Zhang, C. Feng, L. Jiang, ACS Nano 9 (2015) 10664. https://doi.org/10.1021/acsnano.5b04231
  13. H. Younas, Y. Fei, J. Shao, Y. He, Biofouling 32 (2016) 1089. https://doi.org/10.1080/08927014.2016.1229775
  14. X. Lin, M. Yang, H. Jeong, M. Chang, J. Hong, J. Membr. Sci. 506 (2016) 22. https://doi.org/10.1016/j.memsci.2016.01.035
  15. S. Hwangbo, H. Jeong, J. Heo, X. Lin, Y. Kim, M. Chang, J. Hong, React. Funct. Polym. 102 (2016) 27. https://doi.org/10.1016/j.reactfunctpolym.2016.03.004
  16. O.-U. Nimittrakoolchai, S. Supothina, J. Eur. Ceram. Soc. 28 (2008) 947. https://doi.org/10.1016/j.jeurceramsoc.2007.09.025
  17. X. Zhang, L. Wang, E. Levanen, RSC Adv. 3 (2013) 12003. https://doi.org/10.1039/c3ra40497h
  18. J. Wang, Z. Wang, S. Guo, J. Zhang, Y. Song, X. Dong, X. Wang, J. Yu, Microporous Mesoporous Mater. 146 (2011) 216. https://doi.org/10.1016/j.micromeso.2011.04.005
  19. A. Garcia, Y. Quintero, N. Vicencio, B. Rodriguez, D. Ozturk, E. Mosquera, T. Corrales, U. Volkmann, RSC Adv. 6 (2016) 82941. https://doi.org/10.1039/C6RA17999A
  20. S. Park, J. Park, J. Heo, B.Y. Hong, J. Hong, Appl. Surf. Sci. 425 (2017) 547. https://doi.org/10.1016/j.apsusc.2017.07.043
  21. M. Choi, D. Choi, J. Hong, Biomacromolecules 7 (2018) 3096.
  22. D. Choi, M. Komeda, J. Heo, J. Hong, M. Matsusaki, M. Akashi, ACS Biomater. Sci. Eng. 4 (2018) 1833.
  23. J. Hong, J.Y. Han, H. Yoon, P. Joo, T. Lee, E. Seo, K. Char, B.-S. Kim, Nanoscale 3 (2011) 4515. https://doi.org/10.1039/c1nr10575b
  24. J. Hong, B.-S. Kim, K. Char, P.T. Hammond, Biomacromolecules 12 (2011) 2975. https://doi.org/10.1021/bm200566k
  25. D. Choi, J. Park, J. Heo, T.I. Oh, E. Lee, J. Hong, ACS Appl. Mater. Interfaces 9 (2017) 12264. https://doi.org/10.1021/acsami.7b00365
  26. D. Choi, B. Son, T.H. Park, J. Hong, Nanoscale 7 (2015) 6703. https://doi.org/10.1039/C4NR07373H
  27. U. Han, Y. Seo, J. Hong, Sci. Rep. 6 (2016) 24158. https://doi.org/10.1038/srep24158
  28. M. Choi, H.H. Park, D. Choi, U. Han, T.H. Park, H. Lee, J. Park, J. Hong, Adv. Healthcare Mater. 6 (2017).
  29. N. Nuraje, R. Asmatulu, R.E. Cohen, M.F. Rubner, Langmuir 27 (2010) 782.
  30. T. Serizawa, M. Yamaguchi, M. Akashi, Macromolecules 35 (2002) 8656. https://doi.org/10.1021/ma012153s
  31. S. Zhang, W. Liu, J. Liang, X. Li, W. Liang, S. He, C. Zhu, L. Mao, Cellulose 20 (2013) 1135. https://doi.org/10.1007/s10570-013-9895-5
  32. J. Zhao, M. Milanova, M.M. Warmoeskerken, V. Dutschk, Colloids Surf. Physicochem. Eng. Aspects 413 (2012) 273. https://doi.org/10.1016/j.colsurfa.2011.11.033
  33. M. Acocella, C.E. Corcione, A. Giuri, M. Maggio, A. Maffezzoli, G. Guerra, RSC Adv. 6 (2016) 23858. https://doi.org/10.1039/C6RA00485G
  34. A.M. Doody, J.N. Korley, K.P. Dang, P.N. Zawaneh, D. Putnam, J. Controlled Release 116 (2006) 227. https://doi.org/10.1016/j.jconrel.2006.07.019
  35. S. Mehrotra, D. Lynam, R. Maloney, K.M. Pawelec, M.H. Tuszynski, I. Lee, C. Chan, J. Sakamoto, Adv. Funct. Mater. 20 (2010) 247. https://doi.org/10.1002/adfm.200901172
  36. C. Picart, J. Mutterer, L. Richert, Y. Luo, G. Prestwich, P. Schaaf, J.-C. Voegel, P. Lavalle, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 12531. https://doi.org/10.1073/pnas.202486099
  37. D.T. Haynie, E. Cho, P. Waduge, Langmuir 27 (2011) 5700. https://doi.org/10.1021/la104516a
  38. J.V. Staros, R.W. Wright, D.M. Swingle, Anal. Biochem. 156 (1986) 220. https://doi.org/10.1016/0003-2697(86)90176-4
  39. B.P. Partlow, M.B. Applegate, F.G. Omenetto, D.L. Kaplan, ACS Biomater. Sci. Eng. 2 (2016) 2108. https://doi.org/10.1021/acsbiomaterials.6b00454
  40. L. Richert, F. Boulmedais, P. Lavalle, J. Mutterer, E. Ferreux, G. Decher, P. Schaaf, J.-C. Voegel, C. Picart, Biomacromolecules 5 (2004) 284. https://doi.org/10.1021/bm0342281
  41. K.L. Cho, A.J. Hill, F. Caruso, S.E. Kentish, Adv. Mater. 27 (2015) 2791. https://doi.org/10.1002/adma.201405783
  42. C. Branca, G. D'Angelo, C. Crupi, K. Khouzami, S. Rifici, G. Ruello, U. Wanderlingh, Polymer 99 (2016) 614. https://doi.org/10.1016/j.polymer.2016.07.086
  43. L. Zhang, Y. Jin, H. Liu, Y. Du, J. Appl. Polym. Sci. 82 (2001) 584. https://doi.org/10.1002/app.1886
  44. F.-L. Mi, H.-W. Sung, S.-S. Shyu, Carbohydr. Polym. 48 (2002) 61. https://doi.org/10.1016/S0144-8617(01)00212-0
  45. J. Kong, S. Yu, AcBBS 39 (2007) 549.
  46. S. Park, D. Choi, H. Jeong, J. Heo, J. Hong, Mol. Pharmaceutics 14 (2017) 3322. https://doi.org/10.1021/acs.molpharmaceut.7b00371
  47. C. Chang, A. Lue, L. Zhang, Macromol. Chem. Phys. 209 (2008) 1266. https://doi.org/10.1002/macp.200800161
  48. G.V. Martins, E.G. Merino, J.F. Mano, N.M. Alves, Macromol. Biosci. 10 (2010) 1444. https://doi.org/10.1002/mabi.201000193
  49. S. Park, H. Kim, S. Yang, J. Moon, H. Ahn, J. Hong, ACS Appl. Mater. Interfaces 10 (2017) 17714.
  50. J.A. Howarter, J.P. Youngblood, Macromol. Rapid Commun. 29 (2008) 455. https://doi.org/10.1002/marc.200700733
  51. F.C. Cebeci, Z. Wu, L. Zhai, R.E. Cohen, M.F. Rubner, Langmuir 22 (2006) 2856. https://doi.org/10.1021/la053182p
  52. A. Giacomello, S. Meloni, M. Chinappi, C.M. Casciola, Langmuir 28 (2012) 10764. https://doi.org/10.1021/la3018453
  53. M. Ang, X. Ng, C. Wong, P. Yan, S.-P. Chee, S.S. Venkatraman, T.T. Wong, PLoS One 9 (2014)e97555. https://doi.org/10.1371/journal.pone.0097555
  54. S.M. Uriarte, R.E. Molestina, R.D. Miller, J. Bernabo, A. Farinati, K. Eiguchi, J.A. Ramirez, J.T. Summersgill, Antimicrob. Agents Chemother. 48 (2004) 2538. https://doi.org/10.1128/AAC.48.7.2538-2543.2004
  55. R. Tsivkovskii, M. Sabet, Z. Tarazi, D.C. Griffith, O. Lomovskaya, M.N. Dudley, FEMS Immunol. Med. Microbiol. 61 (2010) 141.
  56. G.S. Zimmermann, C. Neurohr, H. Villena-Hermoza, R. Hatz, J. Behr, Respir. Res. 10 (2009) 89. https://doi.org/10.1186/1465-9921-10-89
  57. F. Ji, L. You, L. Wang, Z. Liu, Y. Zhang, S. Lv, Ind. Eng. Chem. Res. 55 (2016) 10664. https://doi.org/10.1021/acs.iecr.6b02080
  58. M. Ang, P. Yan, M. Zhen, S. Foo, S.S. Venkatraman, T.T. Wong, Curr. Eye Res. 36 (2011) 1123. https://doi.org/10.3109/02713683.2011.627489
  59. T.-H. Yeh, W.-C. Hsu, Y.-S. Chen, C.-J. Hsu, S.-Y. Lee, Acta Otolaryngol. 125 (2005) 1091. https://doi.org/10.1080/00016480510037906
  60. M. Paplinska-Goryca, P. Nejman-Gryz, R. Chazan, H. Grubek-Jaworska, Cell. Mol. Biol. Lett. 18 (2013) 612.

피인용 문헌

  1. Transparent anti-fogging and anti-scratch SiO2/SiO2-TiO2 thin film on polycarbonate substrate vol.6, pp.8, 2018, https://doi.org/10.1088/2053-1591/ab2443
  2. Initiated Chemical Vapor Deposition of Poly(Ethylhexyl Acrylate) Films in a Large-Scale Batch Reactor vol.58, pp.32, 2018, https://doi.org/10.1021/acs.iecr.9b02213
  3. Bioinspired surfaces with wettability: biomolecule adhesion behaviors vol.8, pp.6, 2018, https://doi.org/10.1039/c9bm01729a
  4. Efficient Drug Delivery Carrier Surface without Unwanted Adsorption Using Sulfobetaine Zwitterion vol.7, pp.22, 2018, https://doi.org/10.1002/admi.202001433
  5. Recent Advances in Antiinflammatory Material Design vol.10, pp.1, 2021, https://doi.org/10.1002/adhm.202001373
  6. Review of silicone surface modification techniques and coatings for antibacterial/antimicrobial applications to improve breast implant surfaces vol.121, pp.None, 2021, https://doi.org/10.1016/j.actbio.2020.11.020
  7. Optimization of oxygen plasma treatment of silicone implant surface for inhibition of capsular contracture vol.97, pp.None, 2018, https://doi.org/10.1016/j.jiec.2021.02.004
  8. Biofilm inhibition mechanism of BiVO4 inserted zinc matrix in marine isolated bacteria vol.75, pp.None, 2018, https://doi.org/10.1016/j.jmst.2020.10.006
  9. Chitosan/Cellulose-Based Porous Nanofilm Delivering C-Phycocyanin: A Novel Platform for the Production of Cost-Effective Cultured Meat vol.13, pp.27, 2021, https://doi.org/10.1021/acsami.1c07385
  10. Tailoring Materials with Specific Wettability in Biomedical Engineering vol.8, pp.19, 2018, https://doi.org/10.1002/advs.202100126
  11. Past and Current Progress in the Development of Antiviral/Antimicrobial Polymer Coating towards COVID-19 Prevention: A Review vol.13, pp.23, 2018, https://doi.org/10.3390/polym13234234
  12. Physicochemical aspects of design of ultrathin films based on chitosan, pectin, and their silver nanocomposites with antiadhesive and bactericidal potential vol.110, pp.1, 2018, https://doi.org/10.1002/jbm.a.37278
  13. Titanium dioxide and other nanomaterials based antimicrobial additives in functional paints and coatings: Review vol.163, pp.None, 2022, https://doi.org/10.1016/j.porgcoat.2021.106660