• Title/Summary/Keyword: Bacterial Production

Search Result 1,588, Processing Time 0.024 seconds

The Bacillus subtilis and Lactic Acid Bacteria Probiotics Influences Intestinal Mucin Gene Expression, Histomorphology and Growth Performance in Broilers

  • Aliakbarpour, H.R.;Chamani, Mohammad;Rahimi, G.;Sadeghi, A.A.;Qujeq, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1285-1293
    • /
    • 2012
  • The aim of the present study was to evaluate the effect of commercial monostrain and multistrain probiotics in diets on growth performance, intestinal morphology and mucin gene (MUC2) expression in broiler chicks. Three hundred seventy-eight 1-d-old male Arian broiler chicks were allocated in 3 experimental groups for 6 wk. The birds were fed on a corn-soybean based diet and depending on the addition were labeled as follows: control-unsupplemented (C), birds supplemented with Bacillus subtilis (BS) and lactic acid bacteria (LAB) based probiotics. Each treatment had 6 replicates of 21 broilers each. Treatment effects on body weight, feed intake, feed conversion ratio and biomarkers such as intestinal goblet cell density, villus length, villus width, and mucin gene expression were determined. Total feed intake did not differ significantly between control birds and those fed a diet with probiotics (p>0.05). However, significant differences in growth performance were found. Final body weight at 42 d of age was higher in birds fed a diet with probiotics compared to those fed a diet without probiotic (p<0.05). Inclusion of Bacillus subtilis based probiotic in the diets also significantly affected feed conversion rate (FCR) compared with control birds (p<0.05). No differences in growth performance were observed in birds fed different types of probiotic supplemented diets. Inclusion of lactic acid bacteria based probiotic in the diets significantly increased goblet cell number and villus length (p<0.05). Furthermore, diets with Bacillus subtilis based probiotics significantly increased gene expression (p<0.05), with higher intestinal MUC2 mRNA in birds fed diet with probiotics compared to those fed the control diet. In BS and LAB probiotic fed chicks, higher growth performance may be related to higher expression of the MUC2 gene in goblet cells and/or morphological change of small intestinal tract. The higher synthesis of the mucin gene after probiotic administration may positively affect bacterial interactions in the intestinal digestive tract, intestinal mucosal cell proliferation and consequently efficient nutrient absorption.

Substituting oat hay or maize silage for portion of alfalfa hay affects growth performance, ruminal fermentation, and nutrient digestibility of weaned calves

  • Zou, Yang;Zou, XinPing;Li, XiZhi;Guo, Gang;Ji, Peng;Wang, Yan;Li, ShengLi;Wang, YaJing;Cao, ZhiJun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.369-378
    • /
    • 2018
  • Objective: The impact of forage feeding strategy on growth performance, ruminal fermentation and nutrient digestibility in post-weaning calves was investigated. Methods: Forty-five female Holstein calves (body weight [BW] = $79.79{\pm}0.38kg$) were enrolled in the 35-d study at one week after weaning and randomly assigned to one of three dietary treatments. All diets were fed as total mixed ration containing 60% (dry matter [DM] basis) of basal starter feed and 40% (DM basis) of forage, but varied in composition of forage source including i) alfalfa (40% DM, AH); ii) alfalfa hay (26.7% DM)+oat hay (13.3% DM; OH); iii) alfalfa hay (26.7% DM)+corn silage (13.3% DM; WS). Results: Dry matter intake was not different among treatment groups (p>0.05). However, BW (p<0.05) and average daily gain (p<0.05) of calves fed AH and OH were greater than WS-fed calves, whereas heart girth was greater in OH-fed calves than those fed AH and WS (p<0.05). Ruminal fermentation parameters including proportion of butyric acid, acetated-to-propionate ratio, concentration of total volatile fatty acid, protozoal protein, bacterial protein, and microbial protein in rumen were the highest in OH (p<0.05) and the lowest in WS. Compared with the AH and WS, feeding oat hay to postweaning calves increased crude protein digestibility (p<0.05), and decreased duration of diarrhea (p<0.05) and fecal index (p<0.05). Conclusion: Our results suggested that partially replacing alfalfa hay with oat hay improved ruminal fermentation, nitrogen utilization, and reduced incidence of diarrhea in post-weaning dairy calves.

Survey on Occurrence and Management of Disease and Pests in Organic Peach Orchards (유기재배 복숭아 과원의 관리현황 및 병해충 발생 실태)

  • Kim, Min-Gi;An, Min-Sil;Park, Jong-Ho;Lee, Cho-Rong;Lee, Sang-Beom;Park, Kwang-Lai;Hong, Seung-Gil
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.3
    • /
    • pp.603-617
    • /
    • 2017
  • The occurrence and management of disease and pests in six organic peach orchards were surveyed from March 2015 to March 2017. In this period, the number of certified organic and non-chemical peach farms increased to 65.5% and 31.7%, respectively. Certified organic peach farms were selected based on more than $4,000m^2$ of cultivation area and three tons of production, and their cultivation status was examined. All of the farms were either cultivated green manure crop or sod, and limited vegetation control to a minimum. For the management of soil nutrients, many farmers used livestock manure, oilcake and self-manufacturing liquid fertilizer. It was surveyed that bordeaux mixture, lime sulfur, pheromone for mating disruption of moths and plant extract were used for disease and pest control. The damage caused by the pests and diseases were 31.6% and 24.1%, respectively. The oriental fruit moth showed the highest damage rate (13.5%) in the organic peach orchards, followed by the brown rot (13.0%), peach fruit moth (7.3%) and bacterial shot hole (7.3%).

Antibacterial and Anti-inflammatory Effects of Essential Oil from the Magnolia kobus Flower (목련 꽃 에센셜 오일의 항균 및 항염증 활성)

  • Lee, Jae-Yeul;Jhee, Kwang-Hwan;Yang, Seun-Ah
    • Journal of Life Science
    • /
    • v.30 no.3
    • /
    • pp.278-284
    • /
    • 2020
  • Magnolia kobus is known to exert various biological effects, such as antioxidant and hypnotic activity. In this study, we investigated the antimicrobial and anti-inflammatory activity of M. kobus essential oil extracted using steam distillation. Its antimicrobial activity was tested against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa by the paper disk diffusion and minimum inhibitory concentration (MIC) methods. Its anti-inflammatory activity was evaluated by measuring its inhibition ratio on the production of nitric oxide (NO) and PGE2 in lipopolysaccharide (LPS)-induced RAW264.7 cells. Its composition was analyzed by gas chromatography-mass spectrometry (GC-MS). The results showed that M. kobus essential oil exhibited excellent antibacterial activity against S. aureus, with a clear zone of 18 mm and an MIC value of 0.25 mg/ml. Its clear zones against P. aeruginosa and E. coli were 14 mm and 17 mm, respectively, while its MIC values were 1 mg/ml and 0.5 mg/ml, respectively. The essential oil exhibited no cytotoxicity to the RAW264.7 cells at a concentration of 500 ㎍/ml while showing NO (37.7%) and PGE2 inhibition (24.0%). Its three main fragrance ingredients identified were 3-carene (77.07%), β-elemene (6.92%), and caryphyllene (2.86%). The results suggest that M. kobus essential oil has potential as a cosmetic functional material with antimicrobial and anti-inflammatory effects.

Toxicity of Silver Nanoparticles and Application of Natural Products on Fabric and Filters as an Alternative (은나노 입자의 독성 메커니즘 및 천연물을 활용한 은나노 대체 항균 소재 연구)

  • Karadeniz, Fatih;Kim, Han Seong
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.864-873
    • /
    • 2018
  • There has been increasing attention and research in various nanoparticle applications. Nanoparticles have been used for a variety of purposes in different departments including but not limited to cosmetics, food, machinery, and chemical. A highly sought-after field to use nanoparticles, especially natural or artificial silver nanoparticles (SNPs), is the utilization of their significant antimicrobial properties in daily items such as fabrics, indoor air filters, and, water filtration units where abundant bacterial and fungal growth are inevitable. These applications of SNPs, however, have enabled continuous human exposure and hence paved the way for potential SNP toxicity depending on exposure method and particle size. This potential toxicity has led to researches on safer antimicrobial solutions to be utilized in textile and filtration. In this context, products of natural origin have gained expanding interest due to their eco-friendly, cost-effective, and biologically safe properties along their promising antibacterial and antifungal activities. Natural product-applied fabrics and filters have been shown to be comparable to those that are SNP-treated in terms of ease production, material durability, and antimicrobial efficiency. This article summarizes and assesses the current state of in vitro and in vitro toxicity of SNPs and discusses the potential of natural products as an alternative.

Production and Characterization of α-Galactosidases from Two Bacillus licheniformis Isolates (Bacillus licheniformis 분리균 2종의 α-Galactosidase 생산성과 효소특성)

  • Jin, Hyun Kyung;Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.195-203
    • /
    • 2015
  • Two bacterial strains, Bacillus licheniformis YB-1413 and YB-1414, producing extracellular α-galactosidase, were obtained from homemade Doenjang. On the basis of their biochemical properties, 16S rRNA sequences and random amplified polymorphic DNA patterns by polymerase chain reaction, they were found to be somewhat different from one another. α-Galactosidase productivities of the two isolates were increased by wheat bran, but drastically decreased by melibiose, raffinose and sucrose which were used as carbon sources. The enzyme productivities were increased by yeast extract as a nitrogen source with maximum levels of 1.87 U/ml for YB-1413 and 1.69 U/ml for YB-1414, respectively. The enzymes of both isolates exhibited maximum activity for hydrolysis of para-nitrophenyl-α-D-galactopyranoside (pNP-αGal) under reaction conditions of pH 6.0 and 45℃. Their hydrolyzing activities for pNP-αGal were drastically decreased by the addition of low concentrations of ribose and galactose. They were capable of hydrolyzing completely α-1,6 linked galactosyl residue in melibiose, raffinose and stachyose, which are known to be anti-nutritional factors in products of soybean and legume. In relation to the latter, the isolates YB-1413 and YB-1414 have potential applicability in improving soybean-fermented foods and the nutritional value of soybean feed.

Isolation of a New Agar Degrading Bacterium, Maribacter sp. SH-1 and Characterization of its Agarase (신규 한천분해세균 Maribacter sp. SH-1의 분리 및 효소 특성조사)

  • Lee, Chang-Eun;Lee, Sol-Ji;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.156-162
    • /
    • 2016
  • In this study, we isolated a new agar-degrading marine bacterium and characterized its agarase. An agardegrading marine bacterium SH-1 was isolated from seawater, collected from the seashore of Namhae in Gyeongnam province, Korea, and cultured in marine agar 2216 media. It was identified as Maribacter. sp. SH-1 by phylogenetic analyses, based on 16S rRNA gene sequence. The extracellular agarase was extracted from culture media of Maribacter sp. SH-1 and characterized. Its relative activities were 56, 62, 94, 100, and 8% at 20, 30, 40, 50, and 60℃, respectively, whereas 15, 100, 60, and 21% relative activities were observed at pH 5, 6, 7, and 8, respectively. Its extracellular agarase exhibited maximum activity (231 units/l) at pH 6.0 and 50℃, in 20 mM Tris-HCl buffer. Therefore, this agarase would be applicable as it showed the maximum activity at the temperature at which the agar is in a sol state. Furthermore, the agarase activities remained over 90% at 20, 30, and 40℃ after 0.5 h exposure at these temperatures. Thin layer chromatography analysis suggested that Maribacter sp. SH-1 produces extracellular β-agarase, as it hydrolyzes agarose to produce neoagarooligosaccharides, such as neoagarohexaose (34.8%), neoagarotetraose (52.2%), and neoagarobiose (13.0%). Maribacter sp. SH-1 and its β-agarase would be useful for the production of neoagarooligosaccharides, which shows functional properties, like skin moisturizing, skin whitening, inhibition of bacterial growth, and delay in starch degradation.

Characterization of Antimicrobial Substance Produced by Lactobacillus sp. HN 235 Isolated from Pig Intestine (돼지 장관으로부터 분리한 Lactobacillus sp. HN 235 균주가 생산하는 항균물질의 특성)

  • Shin, Myeong-Su;Han, Sun-Kyung;Choi, Ji-Hyun;Ji, Ae-Ran;Kim, Kyeong-Su;Lee, Wan-Kyu
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.125-132
    • /
    • 2009
  • In order to develop probiotics which may be a viable alternative of antibiotic use in pig industry, five bacterial strains (Lactobacillus sp. HN 52, 92, 98, 235 and AP 116) possessing antimicrobial properties were selected from 500 strains isolates of pig intestines. The bacteriocin produced by Lactobacillus sp. HN 235 displayed a relative broad spectrum of inhibitory activity against all Enterococcus strains, Pseudomonas aeruginosa, Listeria monocytogenes and Clostridium perfringens using the spot-on-lawn method. The production of antimicrobial substance started in the middle of the exponential growth phase, reached maximum levels (6,400 AU/mL) in the stationary phase, and then declined. Bacteriocin activity remained unchanged after 30 min of heat treatment at $95^{\circ}C$ and stable from pH 2.0 to 10 for 1 h, or exposure to organic solvents; however, it diminished after treatment with proteolytic enzymes. The molecular weight of the bacteriocin was about 5 kDa according to a tricine SDS-PAGE analysis.

Present Status of Soilborne Disease Incidence and Scheme for Its Integrated Management in Korea (국내 토양병해 발생현황과 종합 관리방안)

  • Kim, Choong-Hoe;Kim, Yong-Ki
    • Research in Plant Disease
    • /
    • v.8 no.3
    • /
    • pp.146-161
    • /
    • 2002
  • Incidence of soilborne diseases, as a major cause of failure of continuous monocropping becomes severe in recent years. For examples, recent epidemics of club root of chinese cabbage, white rot of garlic, bacterial wilt of potato, pepper phytophthora blight, tomato fusarium wilt and CGMMV of watermelon are the diseases that require urgent control measures. Reasons for the severe incidence of soilborne diseases are the simplified cropping system or continuous monocropping associated with allocation of major production areas of certain crop and year-round cultivation system that results in rapid degradation of soil environment. Neglect of breeding for disease resistance relative to giving much emphasis on high yield and good quality, and cultural methods putting first on the use of chemical fertilizers are thought to be the reason. Counter-measures against soilborne disease epidemics would become most effective when the remedies are seeded for individual causes. As long-term strategies, development of rational cropping system which fits local cropping and economic condition, development and supply of cultivars resistant to multiple diseases, and improvement of soil environment by soil conditioning are suggested. In short-term strategies, simple and economical soil-disinfestation technology, and quick and accurate forecasting methods for soilborne diseases are urgent matter far development. for these, extensive supports are required in governmental level for rearing soilborne disease specialists and activation of collaborating researches to solve encountering problems of soilborne diseases.

Quality Characteristics of Kimchi Added with Green Tea Powder (분말녹차 첨가 김치의 품질 특성)

  • Ko, Young-Tae;Lee, Su-Hyun
    • Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.281-286
    • /
    • 2007
  • The effects of green tea powder (GTP) on kimchi quality were evaluated by investigating acid production, growth of lactic acid bacteria, sensory properties, and several volatile odor components of GTP-added kimchi. The concentrations of GTE added to kimchi were 0.2, 0.4, 0.6 and 1.2% (w/w) of salted Chinese cabbage. The pH of kimchi with higher amounts of added GTP increased with ripening. The acidity of unripened kimchi or kimchi ripened for one day generally increased with the addition of GTP, while that of kimchi ripened for two or three days generally decreased with the addition of GTP. Addition of GTP had no significant effect on the lactic acid bacterial count of kimchi. Scores of overall acceptability, taste and odor of 0.2 or 0.4% GTP-added kimchi were higher than those of other samples, whereas scores of color decreased with increasing amount of GTP added to kimchi. Texture of kimchi added with higher amounts of GTP and ripened for two or three days resulted in lower score than the reference sample. Diallyl sulfide and methyl trisulfide were newly produced with the ripening of kimchi, and the amounts of some volatile odor components in kimchi were changed during ripening.