Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.7.864

Toxicity of Silver Nanoparticles and Application of Natural Products on Fabric and Filters as an Alternative  

Karadeniz, Fatih (Department of Organic Material Science and Engineering, Pusan National University)
Kim, Han Seong (Department of Organic Material Science and Engineering, Pusan National University)
Publication Information
Journal of Life Science / v.28, no.7, 2018 , pp. 864-873 More about this Journal
Abstract
There has been increasing attention and research in various nanoparticle applications. Nanoparticles have been used for a variety of purposes in different departments including but not limited to cosmetics, food, machinery, and chemical. A highly sought-after field to use nanoparticles, especially natural or artificial silver nanoparticles (SNPs), is the utilization of their significant antimicrobial properties in daily items such as fabrics, indoor air filters, and, water filtration units where abundant bacterial and fungal growth are inevitable. These applications of SNPs, however, have enabled continuous human exposure and hence paved the way for potential SNP toxicity depending on exposure method and particle size. This potential toxicity has led to researches on safer antimicrobial solutions to be utilized in textile and filtration. In this context, products of natural origin have gained expanding interest due to their eco-friendly, cost-effective, and biologically safe properties along their promising antibacterial and antifungal activities. Natural product-applied fabrics and filters have been shown to be comparable to those that are SNP-treated in terms of ease production, material durability, and antimicrobial efficiency. This article summarizes and assesses the current state of in vitro and in vitro toxicity of SNPs and discusses the potential of natural products as an alternative.
Keywords
Antimicrobial fabric; antimicrobial filter; natural product; silver nanoparticle; toxicity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Duran, N., Marcato, P. D., De Souza, G. I. H., Alves, O. L. and Esposito, E. 2007. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 3, 203-208.   DOI
2 El-Shishtawy, R. M., Asiri, A. M., Abdelwahed, N. A. M. and Al-Otaibi, M. M. 2011. In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose 18, 75-82.   DOI
3 Ferrero, F., Periolatto, M., Vineis, C. and Varesano, A. 2014. Chitosan coated cotton gauze for antibacterial water filtration. Carbohydr. Polym. 103, 207-212.   DOI
4 Filipak Neto, F., Cardoso da Silva, L., Liebel, S., Voigt, C. L. and Oliveira Ribeiro, C. A. 2018. Responses of human hepatoma HepG2 cells to silver nanoparticles and polycyclic aromatic hydrocarbons. Toxicol. Mech. Methods 28, 69-78.   DOI
5 Foarde, K. K., Hanley, J. T. and Veeck, A. C. 2000. Efficacy of antimicrobial filter treatments. ASHRAE J. 42, 52-58.
6 Pasquarella, C., Sansebastiano, G. E., Ferretti, S., Saccani, E., Fanti, M., Moscato, U., Giannetti, G., Fornia, S., Cortellini, P., Vitali, P. and Signorelli, C. 2007. A mobile laminar airflow unit to reduce air bacterial contamination at surgical area in a conventionally ventilated operating theatre. J. Hosp. Infect. 66, 313-319.   DOI
7 Purwar, R. and Joshi, M. 2004. Recent developments in antimicrobial finishing of textiles - A review. AATCC Rev. 4, 22-26.
8 Greulich, C., Kittler, S., Epple, M., Muhr, G. and Köller, M. 2009. Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbeck's Arch. Surg. 394, 495-502.   DOI
9 Guo, D., Zhao, Y., Zhang, Y., Wang, Q., Huang, Z., Ding, Q., Guo, Z., Zhou, X., Zhu, L. and Gu, N. 2014. The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells. J. Biomed. Nanotechnol. 10, 669-678.   DOI
10 Gao, Y. and Cranston, R. 2008. Recent advances in antimicrobial treatments of textiles. Text. Res. J. 78, 60-72.   DOI
11 Gupta, D. and Haile, A. 2007. Multifunctional properties of cotton fabric treated with chitosan and carboxymethyl chitosan. Carbohydr. Polym. 69, 164-171.   DOI
12 Gupta, D. and Laha, A. 2007. Antimicrobial activity of cotton fabric treated with Quercus infectoria extract. Indian J. Fibre Text. Res. 32, 88-92.
13 Han, B. 2015. Investigation of antimicrobial activity of grapefruit seed extract and its application to air filters with comparison to propolis and shiitake. Aerosol Air Qual. Res. 2015, 1035-1044.
14 Han, S. and Yang, Y. 2005. Antimicrobial activity of wool fabric treated with curcumin. Dye. Pigment. 64, 157-161.   DOI
15 Hsin, Y. H., Chen, C. F., Huang, S., Shih, T. S., Lai, P. S. and Chueh, P. J. 2008. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett. 179, 130-139.   DOI
16 Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T. and Schlager, J. J. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. Vitr. 19, 975-983.   DOI
17 Sarkar, R. K., Purushottam, D. and Chauhan, P. D. 2003. Bacteria-resist finish on cotton fabrics using natural herbal extracts. Indian J. Fibre Text. Res. 28, 322-328.
18 Rahman, M. F., Wang, J., Patterson, T. A., Saini, U. T., Robinson, B. L., Newport, G. D., Murdock, R. C., Schlager, J. J., Hussain, S. M. and Ali, S. F. 2009. Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol. Lett. 187, 15-21.   DOI
19 Rai, M., Yadav, A. and Gade, A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76-83.   DOI
20 Samberg, M. E., Oldenburg, S. J. and Monteiro-Riviere, N. A. 2010. Evaluation of silver nanoparticle toxicity in skin in vitro and keratinocytes in vitro. Environ. Health Perspect. 118, 407-413.   DOI
21 Shin, Y., Yoo, D. I. and Min, K. 1999. Antimicrobial finishing of polypropylene nonwoven fabric by treatment with chitosan oligomer. J. Appl. Polym. Sci. 74, 2911.   DOI
22 Su, W. 1996. Indoor air pollution. Resour. Conserv. Recycl. 16, 77-91.   DOI
23 Sim, K. M., Kim, K. H., Hwang, G. B., Seo, S., Bae, G. N. and Jung, J. H. 2014. Development and evaluation of antimicrobial activated carbon fiber filters using Sophora flavescens nanoparticles. Sci. Total Environ. 493, 291-297.   DOI
24 Singh, R., Jain, A., Panwar, S., Gupta, D. and Khare, S. K. 2005. Antimicrobial activity of some natural dyes. Dye. Pigment. 66, 99-102.   DOI
25 Soto, K., Garza, K. M. and Murr, L. E. 2007. Cytotoxic effects of aggregated nanomaterials. Acta Biomater. 3, 351-358.   DOI
26 Jain, P. and Pradeep, T. 2005. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 90, 59-63.   DOI
27 Hwang, G. B., Heo, K. J., Yun, J. H., Lee, J. E., Lee, H. J., Nho, C. W., Bae, G. N. and Jung, J. H. 2015. Antimicrobial air filters using natural Euscaphis japonica nanoparticles. PLoS One 10, e0126481.   DOI
28 Hwang, G. B., Sim, K. M., Bae, G. N. and Jung, J. H. 2015. Synthesis of hybrid carbon nanotube structures coated with Sophora flavescens nanoparticles and their application to antimicrobial air filtration. J. Aerosol Sci. 86, 44-54.   DOI
29 Hyun, J., Lee, B., Ryu, H., Sung, J., Chung, K. and Yu, I. 2008. Effects of repeated silver nanoparticles exposure on the histological structure and mucins of nasal respiratory mucosa in rats. Toxicol. Lett. 182, 24-28.   DOI
30 Javid, A., Raza, Z. A., Hussain, T. and Rehman, A. 2014. Chitosan microencapsulation of various essential oils to enhance the functional properties of cotton fabric. J. Microencapsul. 31, 461-468.   DOI
31 Jones, A. P. 1999. Indoor air quality and health. Atmos. Environ. 33, 4535-4564.   DOI
32 Jung, J. H., Hwang, G. B., Park, S. Y., Lee, J. E., Nho, C. W., Lee, B. U. and Bae, G. N. 2011. Antimicrobial air filtration using airborne Sophora Flavescens natural-product nanoparticles. Aerosol Sci. Technol. 45, 1510-1518.   DOI
33 Kawata, K., Osawa, M. and Okabe, S. 2009. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ. Sci. Technol. 43, 6046-6051.   DOI
34 Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H. and Cho, M. H. 2007. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3, 95-101.   DOI
35 Walentowska, J. and Foksowicz-Flaczyk, J. 2013. Thyme essential oil for antimicrobial protection of natural textiles. Int. Biodeterior. Biodegradation 84, 407-411.   DOI
36 Sung, J. H., Ji, J. H., Yoon, J. U., Kim, D. S., Song, M. Y., Jeong, J., Han, B. S., Han, J. H., Chung, Y. H., Kim, J., Kim, T. S., Chang, H. K., Lee, E. J., Lee, J. H. and Yu, I. J. 2008. Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal. Toxicol. 20, 567-574.   DOI
37 Takenaka, S., Karg, E., Roth, C., Schulz, H., Ziesenis, A., Heinzmann, U., Schramel, P. and Heyder, J. 2001. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ. Health Perspect. 109, 547-551.
38 Verdenelli, M. C., Cecchini, C., Orpianesi, C., Dadea, G. M. and Cresci, A. 2003. Efficacy of antimicrobial filter treatments on microbial colonization of air panel filters. J. Appl. Microbiol. 94, 9-15.   DOI
39 Wisser, D., Wisser, F. M., Raschke, S., Klein, N., Leistner, M., Grothe, J., Brunner, E. and Kaskel, S. 2015. Biological chitin-MOF composites with hierarchical pore systems for air-filtration applications. Angew. Chemie Int. Ed. Engl. 54, 12588- 12591.   DOI
40 Woo, C. G., Kang, J. S., Kim, H. J., Kim, Y. J. and Han, B. 2015. Treatment of air filters using the antimicrobial natural products propolis and grapefruit seed extract for deactivation of bioaerosols. Aerosol Sci. Technol. 49, 611-619.   DOI
41 Wu, P. C., Li, Y. Y., Chiang, C. M., Huang, C. Y., Lee, C. C., Li, F. C. and Su, H. J. 2005. Changing microbial concentrations are associated with ventilation performance in Taiwan's air-conditioned office buildings. Indoor Air 15, 19-26.   DOI
42 Kulthong, K., Srisung, S., Boonpavanitchakul, K., Kangwansupamonkon, W. and Maniratanachote, R. 2010. Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part. Fibre Toxicol. 7, 8.   DOI
43 Kim, Y. S., Kim, J. S., Cho, H. S., Rha, D. S., Kim, J. M., Park, J. D., Choi, B. S., Lim, R., Chang, H. K., Chung, Y. H., Kwon, I. H., Jeong, J., Han, B. S. and Yu, I. J. 2008. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in SpragueDawley rats. Inhal. Toxicol. 20, 575-583.   DOI
44 Kokura, S., Handa, O., Takagi, T., Ishikawa, T., Naito, Y. and Yoshikawa, T. 2010. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed. Nanotechnol. Biol. Med. 6, 570-574.   DOI
45 Kulthong, K., Maniratanachote, R., Kobayashi, Y., Fukami, T. and Yokoi, T. 2012. Effects of silver nanoparticles on rat hepatic cytochrome P450 enzyme activity. Xenobiotica 42, 854-862.   DOI
46 Lam, P. K., Chan, E. S. Y., Ho, W. S. and Liew, C. T. 2004. In vitro cytotoxicity testing of a nanocrystalline silver dressing (Acticoat) on cultured keratinocytes. Br. J. Biomed. Sci. 61, 125-127.   DOI
47 Lee, H. Y., Choi, Y. J., Jung, E. J., Yin, H. Q., Kwon, J. T., Kim, J. E., Im, H. T., Cho, M. H., Kim, J. H., Kim, H. Y. and Lee, B. H. 2010. Genomics-based screening of differentially expressed genes in the brains of mice exposed to silver nanoparticles via inhalation. J. Nanoparticle Res. 12, 1567-1578.   DOI
48 Li, A., Liu, Z., Zhu, X., Liu, Y. and Wang, Q. 2010. The effect of air-conditioning parameters and deposition dust on microbial growth in supply air ducts. Energy Build. 42, 449-454.   DOI
49 Ali, S. W., Purwar, R., Joshi, M. and Rajendran, S. 2014. Antibacterial properties of Aloe vera gel-finished cotton fabric. Cellulose 21, 2063-2072.   DOI
50 Ao, C. H. and Lee, S. C. 2005. Indoor air purification by photocatalyst $TiO_2$ immobilized on an activated carbon filter installed in an air cleaner. Chem. Eng. Sci. 60, 103-109.   DOI
51 Bernstein, J. A., Alexis, N., Bacchus, H., Bernstein, I. L., Fritz, P., Horner, E., Li, N., Mason, S., Nel, A., Oullette, J., Reijula, K., Reponen, T., Seltzer, J., Smith, A. and Tarlo, S. M. 2008. The health effects of nonindustrial indoor air pollution. J. Allergy Clin. Immunol. 121, 585-591.   DOI
52 Daisey, J. M., Angell, W. J. and Apte, M. G. 2003. Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air 13, 53-64.   DOI
53 Ahamed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S. M., Schlager, J. J. and Hong, Y. 2008. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol. Appl. Pharmacol. 233, 404-410.   DOI
54 Ahearn, D. G. 1997. Fungal colonization of air filters and insulation in a multi-story office building: Production of volatile organics. Curr. Microbiol. 35, 305-308.   DOI
55 Xu, Y., Raja, S., Ferro, A. R., Jaques, P. A., Hopke, P. K., Gressani, C. and Wetzel, L. E. 2010. Effectiveness of heating, ventilation and air conditioning system with HEPA filter unit on indoor air quality and asthmatic children's health. Build. Environ. 45, 330-337.   DOI
56 Yu, B. F., Hu, Z. B., Liu, M., Yang, H. L., Kong, Q. X. and Liu, Y. H. 2009. Review of research on air-conditioning systems and indoor air quality control for human health. Int. J. Refrig. 32, 3-20.   DOI
57 Braydich-Stolle, L., Hussain, S., Schlager, J. J. and Hofmann, M. C. 2005. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 88, 412-419.   DOI
58 Cha, K., Hong, H. W., Choi, Y. G., Lee, M. J., Park, J. H., Chae, H. K., Ryu, G. and Myung, H. 2008. Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol. Lett. 30, 1893-1899.   DOI
59 Christen, V. and Fent, K. 2012. Silica nanoparticles and silver-doped silica nanoparticles induce endoplasmatic reticulum stress response and alter cytochrome P4501A activity. Chemosphere 87, 423-434.   DOI
60 Mpenyana-Monyatsi, L., Mthombeni, N. H., Onyango, M. S. and Momba, M. N. B. 2012. Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater. Int. J. Environ. Res. Public Health 9, 244-271.   DOI
61 Nadiger, V. G. and Shukla, S. R. 2015. Antimicrobial activity of silk treated with Aloe vera. Fibers Polym. 16, 1012-1019.   DOI
62 Nam, C. W., Kim, Y. H. and Ko, S. W. 1999. Modification of polyacrylonitrile (PAN) fiber by blending withN-(2-hydroxy)propyl-3-trimethyl- ammonium chitosan chloride. J. Appl. Polym. Sci. 74, 2258-2265.   DOI
63 Noris, F., Siegel, J. A. and Kinney, K. A. 2011. Evaluation of HVAC filters as a sampling mechanism for indoor microbial communities. Atmos. Environ. 45, 338-346.   DOI
64 Ozyildiz, F., Karagonlu, S., Basal, G., Uzel, A. and Bayraktar, O. 2013. Micro-encapsulation of ozonated red pepper seed oil with antimicrobial activity and application to nonwoven fabric. Lett. Appl. Microbiol. 56, 168-179.   DOI
65 Paddle-Ledinek, J. E., Nasa, Z. and Cleland, H. J. 2006. Effect of different wound dressings on cell viability and proliferation. Plast. Reconstr. Surg. 117, 110S-120S.   DOI