• Title/Summary/Keyword: Bacterial DNA

Search Result 1,099, Processing Time 0.027 seconds

Culture-Based and Denaturing Gradient Gel Electrophoresis Analysis of the Bacterial Community Structure from the Intestinal Tracts of Earthworms (Eisenia fetida)

  • Hong, Sung-Wook;Kim, In-Su;Lee, Ju-Sam;Chung, Kun-Sub
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.885-892
    • /
    • 2011
  • The bacterial communities in the intestinal tracts of earthworm were investigated by culture-dependent and -independent approaches. In total, 72 and 55 pure cultures were isolated from the intestinal tracts of earthworms under aerobic and anaerobic conditions, respectively. Aerobic bacteria were classified as Aeromonas (40%), Bacillus (37%), Photobacterium (10%), Pseudomonas (7%), and Shewanella (6%). Anaerobic bacteria were classified as Aeromonas (52%), Bacillus (27%), Shewanella (12%), Paenibacillus (5%), Clostridium (2%), and Cellulosimicrobium (2%). The dominant microorganisms were Aeromonas and Bacillus species under both aerobic and anaerobic conditions. In all, 39 DNA fragments were identified by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis. Aeromonas sp. was the dominant microorganism in feeds, intestinal tracts, and casts of earthworms. The DGGE band intensity of Aeromonas from feeds, intestinal tracts, and casts of earthworms was 12.8%, 14.7%, and 15.1%, respectively. The other strains identified were Bacillus, Clostridium, Enterobacter, Photobacterium, Pseudomonas, Shewanella, Streptomyces, uncultured Chloroflexi bacterium, and uncultured bacterium. These results suggest that PCR-DGGE analysis was more efficient than the culturedependent approach for the investigation of bacterial diversity and the identification of unculturable microorganisms.

Bacterial Diversity of Culturable Isolates from Seawater and a Marine Coral, Plexauridae sp., near Mun-Sum, Cheju-Island

  • Lee, Jung-Hyun;Shin, Hyun-Hee;Lee, Deuk-Soo;Kwon, Kae-Kyung;Kim, Sang-Jin;Lee, Hong-Kum
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.193-199
    • /
    • 1999
  • Fifty-eight strains showing different colony morphological characteristics on various media were isolated from marine coral (Plexauridae sp.) and ambient seawater near Mun-Sum, Cheju-Island in 1998. Bacterial diversity was studies by phylogenetic analysis of the partial 16S rRNA gene sequences. All isolates representing the bacterial domain included affiliates of the high G+C (59%) and los G+C (3%) subdivision of Gram positive bacteria, and the alpha (33%) and gamma (5%) subdivision of the Proteobacteria. The 16S rDNA sequence similarity of the isolates was in the 88.3 to 100% range (average, 95.6%) to reported sequence data. In the comparison of the isolates from marine coarl and ambient seawater, more diverse groups belonging to ${\alpha}$-Proteobacteria were preferentially obtained from seawater.

  • PDF

Bacterial community comparison revealed by metagenomic analysis and physicochemical properties of eastern little tuna (Euthynnus affinis) with storage temperature differences

  • Asadatun Abdullah;Rahadian Pratama;Tati Nurhayati;Windy Sibuea;Sabila Diana Ahmad Sauqi
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.10
    • /
    • pp.593-604
    • /
    • 2023
  • Post-harvest handling and hygienic level of aquatic products significantly affect the quality and level of safety. Cold chain control is one of the determining factors for the quality of fish and the bacterial community that grows on the fish. Identification of spoilage bacteria and pathogens in aquatic products must be made because it will determine the physical and chemical quality. A molecular identification method with high sensitivity is the solution. This study aims to identify the quality of fish and bacterial communities that grow. The research procedures included sample collection, pH measurement, drip loss measurement, transportation and cold storage treatment, DNA extraction, DNA sequencing, sequence analysis, and bioinformatics analysis. The conclusion obtained from this study is that the simulation of the cold chain system applied to eastern little tuna does not significantly affect changes in the water activity value, pH, and drip loss. The insignificant change indicates that the eastern little tuna samples are still in good quality. The bioinformatics analysis showed the highest diversity and abundance of the bacterial community came from the Gammaproteobacterial class.

Diversity and Phylogenetic Analysis of Culturable Marine Bacteria Isolated from Rhizosphere Soils of Suaeda japonica Makino in Suncheon Bay (순천만 칠면초의 근권으로부터 분리된 해양세균의 다양성 및 계통학적 분석)

  • You, Young-Hyun;Park, Jong Myong;Nam, Yoon-Jong;Kim, Hyun;Lee, Myung-Chul;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.189-196
    • /
    • 2015
  • Bacterial diversity was studied in the rhizosphere of Suaeda japonica Makino, which is native to Suncheon Bay in South Korea. Soil samples from several sites were diluted serially, and pure isolation was performed by subculture using marine agar and tryptic soy agar media. Genomic DNA was extracted from 29 pure, isolated bacterial strains, after which their 16S rDNA sequences were amplified and analyzed. Phylogenetic analysis was performed to confirm their genetic relationship. The 29 bacterial strains were classified into five groups: phylum Firmicutes (44.8%), Gamma proteobacteria group (27.6%), Alpha proteobacteria group (10.3%), phylum Bacteriodetes (10.3%), and phylum Actinobacteria (6.8%). The most widely distributed genera were Bacillus (phylum Firmicutes), and Marinobacterium, Halomonas, and Vibrio (Gamma proteobacteria group). To confirm the bacterial diversity in rhizospheres of S. japonica, the diversity index was used at the genus level. The results show that bacterial diversity differed at each of the sampling sites. These 29 bacterial strains are thought to play a major role in material cycling at Suncheon Bay, in overcoming the sea/mud flat-specific environmental stress. Furthermore, some strains are assumed to be involved in a positive interaction with the halophyte S. japonica, as rhizospheric flora, with induction of growth promotion and plant defense mechanism.

Suppression of Bacterial Wilt with Fuorescent Pseudomonads, TS3-7 strain (Fluorescent siderophore 생산균주, TS3-7에 의한 풋마름병 발병 억제)

  • Kim, Ji-Tae;Cho, Hong-Bum;Kim, Shin-Duk
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.296-300
    • /
    • 2005
  • Among the root colonizing and plant growth promoting bacteria isolated from the bacterial wilt suppressive soil, five strains were detected to produce siderophores by CAS agar assay. The most effective isolate, TS3-7 strain induced significant suppression of bacterial wilt disease in tomato and pepper plants. Seed treatment followed by soil drench application with this strain resulted in over 80% reduction of bacterial wilt disease compared with the control. Significant disease suppression by TS3-7 strain was related to the production of siderophore. Besides iron competition, induction of resistance of the host plant with siderophore was suggested to be another mode of action that suppress bacterial wilt, based on the lack of direct antibiosis against pathogen in vitro. According to Bergey's Manual of Systemic Bacteriology and 16S rDNA sequence data, TS3-7 stain was identified as Pseudomonas sp. TS3-7.

16S rDNA Analysis 9f Bacterial Diversity in Three Fractions of Cow Rumen

  • Cho, Soo-Jeong;Cho, Kye-Man;Shin, Eun-Chule;Lim, Woo-Jin;Hong, Su-Young;Choi, Byoung-Rock;Kang, Jung-Mi;Lee, Sun-Mi;Kim, Yong-Hee;Kim, Hoon;Yun, Han-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.92-101
    • /
    • 2006
  • The bacterial diversity of the bovine rumen was examined using a PCR-based approach. 16S rDNA sequences were amplified and cloned from three fractions of rumen (solid, fluid, and epithelium) that are likely to represent different bacterial niches. A total of 113 clones were sequenced, and similarities to known l6S rDNA sequences were examined. About $47.8\%$ of the sequences had $90-97\%$ similarity to 16S rDNA database sequences. Furthermore, about $62.2\%$ of the sequences were $98-100\%$ similar to 16S rDNA database sequences. For the remaining $6.1\%$, the similarity was less than $90\%$. Phylogenetic analysis was also used to infer the makeup of the bacterial communities in the different rumen fractions. The Cytophaga-Flexibacter-Bacteroides group (CFB, $67.5\%$), low G+C Gram-positive bacteria (LGCGPB, $30\%$), and Proteobacteria $(2.5\%)$ were represented in the rumen fluid clone set; LGCGPB $(75.7\%)$, CFB$(10.8\%)$, Proteobacteria $(5.4\%)$, high G+C Gram-positive bacteria (HGCGPB, $5.4\%$), and Spirochaetes $(2.7\%)$ were represented in the rumen solid clone set; and the CFB group $(94.4\%)$ and LGCGPB $(5.6\%)$ were represented in the rumen epithelium clone set. These findings suggest that the rumen fluid, solid, and epithelium support different microbial populations that may play specific roles in rumen function.

Phylogenetic Characteristics of viable but Nonculturable Bacterial Populations in a Pine Mushroom (Tricholoma matsutake) Forest Soil (송이 자생군락 토양 내 난배양성 세균군집의 계통학적 특성)

  • Kim, Yun-Ji;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.201-209
    • /
    • 2007
  • The CFDA (6-carboxyfluorescein diacetate) direct viable count method and plate count (PC) method using conventional nutrient broth (NB) medium and $10^{-2}$ diluted NB (DNB) medium were applied to samples collected from Mt. Yongdoo In Andong, in an effect to determine the number of living bacteria pine mushroom forest soil. The number of living bacteria determined via plate count in NB medium comprised $5{\sim}8%$ of the CFDA direct viable count, and the bacteria in the DNB medium comprised $40{\sim}47%$. This result indicated that viable but nonculturable (VBNC) bacteria existed in the pine mushroom forest soil at a high percentage. The phylogenetic characteristics of the VBNC bacterial populations in the samples of pine mushroom (Tricholoma matsutake) forest soil were analyzed via the direct extraction of DNA and 16S rDNA-ARDRA. The 115 clones from pine mushroom forest soil were clustered into 31 different RFLP phylotypes by ARDRA. Based on the 16S rDNA sequences, the 31 ARDRA clusters were classified into 6 phylogenetic groups: ${\alpha}-,\;{\beta}-,\;{\gamma}-Proteobacteria$, Acidobacteria, Actinobacteria and Firmicutes. Among these bacterial populations, approximately 85% were classified as members of phylum Acidobacteria. The Acidobacteria phylum was shown to exist abundantly in the pine mushroom forest soil.

Comparative Study of Soil Bacterial Populations in Human Remains and Soil from Keundokgol Site at Buyeo (부여 큰독골 유적 출토 인골 조직 및 외부 토양의 세균 군집의 비교연구)

  • Kim, Yun-ji;Kim, Sue-hoon;Kwon, Eun-sil;Cho, Eun-min;Kang, So-yeong
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.4
    • /
    • pp.92-105
    • /
    • 2014
  • Microbial characteristics of bacterial population were investigated in human remains and soil inside the bones in excavated grave no.4 and no.5 at Keundokgol site, Osu-ri, Buyeo. Phylogenetic characteristics of bacterial populations were analyzed by direct extracting of ancient DNA. In this study, based on the 16S rDNA sequences, in case of grave no.4, 319s from human remain were classified into 11 phyla, and 462s from soil were classified into 16 phyla. In case of grave no.5, 271s from human remain were classified into 10 phyla, and 497s from soil were classified into 11 phyla. Especially, Actinobacteria phylogenetic group are dominant group of bacterial populations in grave no.4 and no.5. Also, most of these were analyzed uncultured group. Thus, the discovery of a diversely microbial community and uncultured group was thought to be due to the specificity of the sample. Conclusively the general excavated human bones were contaminated with soil bacteria species their near around. This results contribute to preservation and management of ancient human bone from archaeological sites.

Analysis of the Bacterial Community during the Storage of Gorosoe(Acer mono Max.) Sap (고로쇠 수액의 저장 중 세균군집 분석)

  • Oh, Jung-Hwan;Seo, Sang-Tae;Oh, Hye-Young;Hong, Jin-Sung;Kang, Ha-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.4
    • /
    • pp.492-496
    • /
    • 2009
  • The composition of the bacterial populations in Gorosoe(Acer mono Max.) sap was characterized during storage with different heat treatments($63^{\circ}C$ for 30 min and $73^{\circ}C$ for 15 sec). The saps were aseptically collected at 0, 15 and 30 days of storage and analyzed by dilution plating and 16S rDNA PCR-DGGE analysis. There were significant differences in the total number of colony forming units(CFUs) of bacteria between heated and nonheated saps. Bacteria of nonheated sap were present at a level of $3.4{\times}10^7CFU/m{\ell}^{-1}$, whereas living bacteria were not detected in the heated sap. According to the 16S rDNA sequence and DGGE analysis, Pseudomonas sp. was the most abundant bacterial strain in the samlpes, and the bacterial community structures become more simplified with time and were composed of the Chryseobacterium sp. with time. These results allowed us to characterize the dominant bacteria involved in Gorosoe sap and to better understand their dynamics throughout storage.

Identification and Characterization of Xanthomonas arboricola pv. juglandis Causing Bacterial Blight of Walnuts in Korea

  • Kim, Hyun Sup;Cheon, Wonsu;Lee, Younmi;Kwon, Hyeok-Tae;Seo, Sang-Tae;Balaraju, Kotnala;Jeon, Yongho
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.137-151
    • /
    • 2021
  • The present study describes the bacterial blight of walnut, caused by Xanthomonas arboricola pv. juglandis (Xaj) in the northern Gyeongbuk province, Korea. Disease symptoms that appear very similar to anthracnose symptoms were observed in walnut trees in June 2016. Pathogens were isolated from disease infected leaves, fruits, shoots, bud, flower bud of walnut, and cultured onto yeast dextrose carbonate agar plates. Isolated bacteria with bacterial blight symptoms were characterized for their nutrient utilization profiles using Biolog GN2 and Vitek 2. In addition, isolates were subjected to physiological, biochemical, and morphological characterizations. Furthermore, isolates were identified using 16S rDNA sequence analysis, and multi-locus sequence analysis using atpD, dnaK, efp, and rpoD. To confirm pathogenicity, leaves, fruits, and stems of 3-year-old walnut plants were inoculated with bacterial pathogen suspensions as a foliar spray. One week after inoculation, the gray spots on leaves and yellow halos around the spots were developed. Fruits and stems showed browning symptoms. The pathogen Xaj was re-isolated from all symptomatic tissues to fulfill Koch's postulates, while symptoms were not appeared on control plants. On the other hand, the symptoms were very similar to the symptoms of anthracnose caused by Colletotrichum gloeosporioides. When walnut plants were inoculated with combined pathogens of Xaj and C. gloeosporioides, disease symptoms were greater in comparison with when inoculated alone. Xaj population size was more in the month of April than March due to their dormancy in March, and sensitive to antibiotics such as oxytetracycline and streptomycin, while resistant to copper sulfate.