• Title/Summary/Keyword: Bacterial 16S rRNA sequencing

Search Result 225, Processing Time 0.032 seconds

Current Challenges of Streptococcus Infection and Effective Molecular, Cellular, and Environmental Control Methods in Aquaculture

  • Mishra, Anshuman;Nam, Gyu-Hwi;Gim, Jeong-An;Lee, Hee-Eun;Jo, Ara;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.495-505
    • /
    • 2018
  • Several bacterial etiological agents of streptococcal disease have been associated with fish mortality and serious global economic loss. Bacterial identification based on biochemical, molecular, and phenotypic methods has been routinely used, along with assessment of morphological analyses. Among these, the molecular method of 16S rRNA sequencing is reliable, but presently, advanced genomics are preferred over other traditional identification methodologies. This review highlights the geographical variation in strains, their relatedness, as well as the complexity of diagnosis, pathogenesis, and various control methods of streptococcal infections. Several limitations, from diagnosis to control, have been reported, which make prevention and containment of streptococcal disease difficult. In this review, we discuss the challenges in diagnosis, pathogenesis, and control methods and suggest appropriate molecular (comparative genomics), cellular, and environmental solutions from among the best available possibilities.

Characterization of the bacterial microbiota across the different intestinal segments of the Qinghai semi-fine wool sheep on the Qinghai-Tibetan Plateau

  • Wang, Xungang;Hu, Linyong;Liu, Hongjin;Xu, Tianwei;Zhao, Na;Zhang, Xiaoling;Geng, Yuanyue;Kang, Shengping;Xu, Shixiao
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.1921-1929
    • /
    • 2021
  • Objective: The intestinal microbiota enhances nutrient absorption in the host and thus promotes heath. Qinghai semi-fine wool sheep is an important livestock raised in the Qinghai-Tibetan Plateau; however, little is known about the bacterial microbiota of its intestinal tract. The aim of this study was to detect the microbial characterization in the intestinal tract of the Qinghai semi-fine wool sheep. Methods: The bacterial profiles of the six different intestinal segments (duodenum, jejunum, ileum, cecum, colon and rectum) of Qinghai semi-fine wool sheep were studied using 16S rRNA V3-V4 hypervariable amplicon sequencing. Results: A total of 2,623,323 effective sequences were obtained, and 441 OTUs shared all six intestinal segments. The bacterial diversity was significantly different among the different intestinal segments, and the large intestine exhibited higher bacterial diversity than the small intestine. Firmicutes, Bacteroidetes, and Patescibacteria were the dominant phyla in these bacterial communities. Additionally, at the genus level, Prevotella_1, Candidatus_Saccharimonas, and Ruminococcaceae_UCG-005 were the most predominant genus in duodenal segment, jejunal and ileal segments, and cecal, colonic, and rectal segments, respectively. We predicted that the microbial functions and the relative abundance of the genes involved in carbohydrate metabolism were overrepresented in the intestinal segments of Qinghai semi-fine wool sheep. Conclusion: The bacterial communities and functions differed among different intestinal segments. Our study is the first to provide insights into the composition and biological functions of the intestinal microbiota of Qinghai semi-fine wool sheep. Our results also provide useful information for the nutritional regulation and production development in Qinghai semi-fine wool sheep.

Description of ten unrecorded bacterial species isolated from Ostrea denselamellosa and Eriocheir japonica from the Seomjin River

  • Choi, Ahyoung;Han, Ji-Hey;Kim, Eui-Jin;Cho, Ja Young;Hwang, Sun-I
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.592-599
    • /
    • 2019
  • Ostrea denselamellosa and Eriocheir japonica samples were collected from the Seomjin River in 2019 as part of the "Research of Host-Associated Bacteria" research program. Almost 200 bacterial strains were isolated from the O. denselamellosa and E. japonica samples and subsequently identified by 16S rRNA gene sequencing. Among the bacterial isolates, ten strains possessed greater than 98.7% sequence similarity with published bacterial species that had not previously been recorded in Korea. These species were phylogenetically diverse, belonging to three phyla, four classes, seven orders, and eight genera. At the genus and class level, the previously unrecorded species belonged to Pseudoalteromonas, Aliivibrio, Rheinheimera, Leucothrix, and Shewanella of the class Gamma-proteobacteria, Olleya of the class Flavobacteriia, Algoriphagus of the class Cytophagia, and Lactococcus of the class Bacilli. The previously unrecorded species were further characterized by examining their Gram staining, colony and cell morphology, biochemical properties, and phylogenetic positions.

Molecular Phylogenetic Diversity and Spatial Distribution of Bacterial Communities in Cooling Stage during Swine Manure Composting

  • Guo, Yan;Zhang, Jinliang;Yan, Yongfeng;Wu, Jian;Zhu, Nengwu;Deng, Changyan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.888-895
    • /
    • 2015
  • Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and subsequent sub-cloning and sequencing were used in this study to analyze the molecular phylogenetic diversity and spatial distribution of bacterial communities in different spatial locations during the cooling stage of composted swine manure. Total microbial DNA was extracted, and bacterial near full-length 16S rRNA genes were subsequently amplified, cloned, RFLP-screened, and sequenced. A total of 420 positive clones were classified by RFLP and near-full-length 16S rDNA sequences. Approximately 48 operational taxonomic units (OTUs) were found among 139 positive clones from the superstratum sample; 26 among 149 were from the middle-level sample and 35 among 132 were from the substrate sample. Thermobifida fusca was common in the superstratum layer of the pile. Some Bacillus spp. were remarkable in the middle-level layer, and Clostridium sp. was dominant in the substrate layer. Among 109 OTUs, 99 displayed homology with those in the GenBank database. Ten OTUs were not closely related to any known species. The superstratum sample had the highest microbial diversity, and different and distinct bacterial communities were detected in the three different layers. This study demonstrated the spatial characteristics of the microbial community distribution in the cooling stage of swine manure compost.

Isolation, Characterization, and Use for Plant Growth Promotion Under Salt Stress, of ACC Deaminase-Producing Halotolerant Bacteria Derived from Coastal Soil

  • Siddikee, M.A.;Chauhan, P.S.;Anandham, R.;Han, Gwang-Hyun;Sa, Tong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1577-1584
    • /
    • 2010
  • In total, 140 halotolerant bacterial strains were isolated from both the soil of barren fields and the rhizosphere of six naturally growing halophytic plants in the vicinity of the Yellow Sea, near the city of Incheon in the Republic of Korea. All of these strains were characterized for multiple plant growth promoting traits, such as the production of indole acetic acid (IAA), nitrogen fixation, phosphorus (P) and zinc (Zn) solubilization, thiosulfate ($S_2O_3$) oxidation, the production of ammonia ($NH_3$), and the production of extracellular hydrolytic enzymes such as protease, chitinase, pectinase, cellulase, and lipase under in vitro conditions. From the original 140 strains tested, on the basis of the latter tests for plant growth promotional activity, 36 were selected for further examination. These 36 halotolerant bacterial strains were then tested for 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Twenty-five of these were found to be positive, and to be exhibiting significantly varying levels of activity. 16S rRNA gene sequencing analyses of the 36 halotolerant strains showed that they belong to 10 different bacterial genera: Bacillus, Brevibacterium, Planococcus, Zhihengliuella, Halomonas, Exiguobacterium, Oceanimonas, Corynebacterium, Arthrobacter, and Micrococcus. Inoculation of the 14 halotolerant bacterial strains to ameliorate salt stress (150 mM NaCl) in canola plants produced an increase in root length of between 5.2% and 47.8%, and dry weight of between 16.2% and 43%, in comparison with the uninoculated positive controls. In particular, three of the bacteria, Brevibacterium epidermidis RS15, Micrococcus yunnanensis RS222, and Bacillus aryabhattai RS341, all showed more than 40% increase in root elongation and dry weight when compared with uninoculated salt-stressed canola seedlings. These results indicate that certain halotolerant bacteria, isolated from coastal soils, have a real potential to enhance plant growth under saline stress, through the reduction of ethylene production via ACC deaminase activity.

Characterization of Vaginal Microbiota Associated with Pregnancy Outcomes of Artificial Insemination in Dairy Cows

  • Chen, Shi-Yi;Deng, Feilong;Zhang, Ming;Jia, Xianbo;Lai, Song-Jia
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.804-810
    • /
    • 2020
  • The profitability of the dairy and beef industries is largely affected by the actually achieved reproductive efficiency. Although a large proportion of cows worldwide are bred by artificial insemination (AI) services, many potential factors affecting the outcome of pregnancy by AI remain to be addressed. In the present study, we investigated the vaginal microbiota by high-throughput sequencing of 16S rRNA gene and analyzed their association with differential pregnancy outcomes (i.e., pregnant vs. nonpregnant) of multiple AI services in dairy cows. Sequencing of the V3-V4 region totally produced 512,046 high-quality sequences that were computationally clustered into 2,584 operational taxonomic units (OTUs). All OTUs were taxonomically assigned to 10 bacterial phyla. There were statistically significant differences among the three AI service times (T1, T2 and T3) with respect to the Shannon index and number of observed OTUs (p < 0.05). Bray-Curtis distance-based PCoA analysis also revealed that T2 group could be significantly distinguished from T1 and T3. However, no significant difference between the pregnant and nonpregnant cows was found in confidence regarding both alpha diversity and beta diversity. These results could help us better understand the possible influence of vaginal microbial community on pregnancy outcomes of AI service in cows.

Candidate of Probiotic Bacteria Isolated from Several Jeotgals: Korean Traditional Fermented Seafoods

  • Cho, Gyu-Sung;Do, Hyung-Ki;Bae, Chae-Yoon;Cho, Gyu-Sup;Whang, Cher-Won;Shin, Heuyn-Kil
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.2
    • /
    • pp.140-145
    • /
    • 2006
  • Seventy eight bacterial strains were isolated from several jeotgals using MRS and M 17 agar media. The probiotic properties such as tolerance of extreme growth condition, production of antimicrobial compound, production of hydrogen peroxide, and enzymatic activity of bile salt hydrolase were investigated. DHK 4, 10, 21 and 74 strains showed_a strong tolerance property against extreme conditions such as low pH and 0.5% oxgall-supplemented medium. DHK 10 and 47 strains produced hydrogen peroxide on TMB agar plate. DHK 8 and 10 strains produced antimicrobial compounds onto MRS agar against E. facalis. DHK 4, 6, 21, 29, 33, 63 and 87 strains had high activities of bile salt hydrolase. Especially, DHK 10 displayed a strong probiotic candidate; the abilities to produce the antimicrobial compound, hydrogen peroxide, and bile salt hydrolase. All these strains are assumed to be useful probiotic candidates. Among 78, twenty seven strains which have probiotic properties were tentatively identified by 16S rRNA sequencing. Among them, 7 Lactobacillus spp., 6 Leuconosotoc spp., 2 Weisella spp., 1 Pediococcus sp., 1 Staphylococcus sp., 1 Enterococcus sp. and 2 Streptococcus spp. were tentatively identified.

Babeisa duncani infection alters gut microbiota profile in hamsters

  • Shangdi Zhang;Jinming Wang;Xiaoyun Li;Yanbo Wang;Yueli Nian;Chongge You;Dekui Zhang;Guiquan Guan
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.1
    • /
    • pp.42-52
    • /
    • 2023
  • The genus Babesia includes parasites that can induce human and animal babesiosis, which are common in tropical and subtropical regions of the world. The gut microbiota has not been examined in hamsters infected by Babesia duncani. Red blood cells infected with B. duncani were injected into hamsters through intraperitoneal route. To evaluate the changes in gut microbiota, DNAs were extracted from small intestinal contents, acquired from hamsters during disease development. Then, the V4 region of the 16S rRNA gene of bacteria was sequenced using the Illumina sequencing platform. Gut microbiota alternation and composition were assessed according to the sequencing data, which were clustered with >97.0% sequence similarity to create amplicon sequence variants (ASVs). Bacteroidetes and Firmicutes were made up of the major components of the gut microbiota in all samples. The abundance of Bacteroidetes elevated after B. duncani infection than the B. duncani-free group, while Firmicutes and Desulfobacterota declined. Alpha diversity analysis demonstrated that the shown ASVs were substantially decreased in the highest parasitemia group than B. duncani-free and lower parasitemia groups. Potential biomarkers were discovered by Linear discriminant analysis Effect Size (LEfSe) analysis, which demonstrated that several bacterial families (including Muribaculaceae, Desulfovibrionaceae, Oscillospiraceae, Helicobacteraceae, Clostridia UGG014, Desulfovibrionaceae, and Lachnospiraceae) were potential biomarkers in B. duncani-infected hamsters. This research demonstrated that B. duncani infectious can modify the gut microbiota of hamsters.

Identification of Bacterial Flora on Cellular Phones of Dentists

  • Kwon, Ye Won;Lee, Si Young
    • International Journal of Oral Biology
    • /
    • v.39 no.3
    • /
    • pp.137-143
    • /
    • 2014
  • Dental professionals are repeatedly exposed to many microorganisms present in both blood and saliva. Thus, dental professionals are at a greater risk of acquiring and spreading infections, and the implementation of infections control guidelines is necessary. Cellular phones have become a necessary device for communicating in hospitals. Cellular phones contaminated with bacteria may serve as a fomite in the transmission of pathogens by the hands of medical personnel. Nevertheless, studies about rate and levels of bacterial contamination of cellular phones have been extremely limited with regards to dental personnel. The purpose of this study was to identify bacterial flora on the cellular phones of dentists by a molecular biological method using the 16S rRNA cloning and sequencing method. We acquired total 200 clones from dentists' cell phones and identified the bacterial species. Pseudomonas (34.6%), Lactobacillus (18.5%), Azomonas (11.5%), and Janthinobacterium (6%) were the dominant genera on dentists' cell phones. The oral bacteria identified were Anaerococcus lactolyticus, Gibbsiella dentisursi, Lactobacills leiae, Streptococcus mitis, Streptococcus oligofermentans, and Streptococcus sanguinis. Pathogenic bacteria and opportunistic pathogens such as Carnobacterium funditum, Raoultella planticola, Shigella flexneri, Lactobacillus iners, Staphylococcus aureus, and Staphylococcus epidermidis were also identified.

Acidophilic Bacterial Communities of Soil and Enrichment Cultures from Two Abandoned Mine Sites of the Korean Peninsula

  • Mishra, Debaraj;Lee, Sun-Hee;Kim, Jae-Hee;Kim, Dong-Jin;Rhee, Young-Ha
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.265-273
    • /
    • 2011
  • Bacterial diversity based on the denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA gene sequences was determined for soil samples from two abandoned mine sites and the corresponding enrichment cultures using soil sample as key inoculum. Sequencing analysis of DGGE bands obtained from both the soil samples matched mostly with sequences of uncultured and newly described organisms, or organisms recently associated with the acid mine drainage environment. However, the enrichment of soil samples in ferrous sulfate and elemental sulfur media yielded sequences that were consistent with well-known iron- and sulfur-oxidizing acidophilic bacteria. Analysis of enrichment cultures of soil samples from Dalsung mine revealed abundant ${\gamma}$-$Proteobacteria$, whereas that of Gubong mine sample displayed acidophilic groups of ${\gamma}$-$Proteobacteria$, ${\alpha}$-$Proteobacteria$, $Actinobacteria$ and $Firmicutes$. Chemical elemental analysis of the mine samples indicated that the Dalsung site contained more iron and sulfate along with other toxic components as compared with those of the Gubong site. Biogeochemistry was believed to be the primary control on the acidophilic bacterial group in the enrichment samples.