Browse > Article
http://dx.doi.org/10.14348/molcells.2018.2154

Current Challenges of Streptococcus Infection and Effective Molecular, Cellular, and Environmental Control Methods in Aquaculture  

Mishra, Anshuman (Institute of Systems Biology, Pusan National University)
Nam, Gyu-Hwi (Institute of Systems Biology, Pusan National University)
Gim, Jeong-An (Institute of Systems Biology, Pusan National University)
Lee, Hee-Eun (Institute of Systems Biology, Pusan National University)
Jo, Ara (Institute of Systems Biology, Pusan National University)
Kim, Heui-Soo (Institute of Systems Biology, Pusan National University)
Abstract
Several bacterial etiological agents of streptococcal disease have been associated with fish mortality and serious global economic loss. Bacterial identification based on biochemical, molecular, and phenotypic methods has been routinely used, along with assessment of morphological analyses. Among these, the molecular method of 16S rRNA sequencing is reliable, but presently, advanced genomics are preferred over other traditional identification methodologies. This review highlights the geographical variation in strains, their relatedness, as well as the complexity of diagnosis, pathogenesis, and various control methods of streptococcal infections. Several limitations, from diagnosis to control, have been reported, which make prevention and containment of streptococcal disease difficult. In this review, we discuss the challenges in diagnosis, pathogenesis, and control methods and suggest appropriate molecular (comparative genomics), cellular, and environmental solutions from among the best available possibilities.
Keywords
antimicrobial; aquaculture; geography; sequencing; Streptococcus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Austin, B., and Austin, D.A. (2007). Bacterial fish pathogens: disease of farmed and wild fish. Springer Science & Business Media.
2 Baeck, G.W., Kim, J.H., Gomez, D.K., and Park, S.C. (2006). Isolation and characterization of Streptococcus sp. from diseased flounder (Paralichthys olivaceus) in Jeju Island. J. Vet. Sci. 7, 53-58.   DOI
3 Barnes, A.C., and Ellis, A.E. (2004). Role of capsule in serotypic differences and complement fixation by Lactococcus garvieae. Fish Shellfish Immunol. 16, 207-214.   DOI
4 Barnes, A.C., Guyot, C., Hansen, B.G., Mackenzie, K., Horne, M.T., and Ellis, A.E. (2002). Resistance to serum killing may contribute to differences in the abilities of capsulate and non-capsulated isolates ofLactococcus garvieae to cause disease in rainbow trout (Oncorhynchus mykiss L.). Fish Shellfish Immunol. 12, 155-168.   DOI
5 Barnett, T.C., Cole, JN., Rivera-Hernandez, T., Henningham, A., Paton, J.C., Nizet, V., and Walker, M.J. (2015). Streptococcal toxins: role in pathogenesis and disease. Cell Microbiol. 17, 1721-1741.   DOI
6 Bennedsen, M., Stuer-Lauridsen, B., Danielsen, M., and Johansen, E. (2011). Screening for antimicrobial resistance genes and virulence factors via genome sequencing. Appl. Environ. Microbiol. 77, 2785-2787.   DOI
7 Bondad-Reantaso, M.G., Subasinghe, R.P., Arthur, J.R., Ogawa, K., Chinabut, S., Adlard, R., Tan, Z., and Shariff, M. (2005). Disease and health management in Asian aquaculture. Vet. Parasitol. 132, 249-272.   DOI
8 Bosshard, P.P., Zbinden, R., Abels, S., Boddinghaus, B., Altwegg, M., and Bottger, E.C. (2006). 16S rRNA gene sequencing versus the API 20 NE system and the VITEK 2 ID-GNB card for identification of nonfermenting Gram-negative bacteria in the clinical laboratory. J. Clin. Microbiol. 44, 1359-1366.   DOI
9 Bromage, E.S., Thomas, A., and Owens, L. (1999). Streptococcus iniae, a bacterial infection in barramundi Lates calcarifer. Dis. Aquat. Organ. 36, 177-181.   DOI
10 Brimil, N., Barthell, E., Heindrichs, U., Kuhn, M., Lutticken, R., and Spellerberg, B. (2006). Epidemiology of Streptococcus agalactiae colonization in Germany. Int. J. Med. Microbiol. 296, 39-44.
11 Buchanan, J.T., Colvin, K.M., Vicknair, M.R., Patel, S.K., Timmer, A.M., and Nizet, V. (2008). Strain-associated virulence factors of Streptococcus iniae in hybrid-striped bass. Vet. Microbiol. 131, 145-153.   DOI
12 Nho, S.W., Shin, G.W., Park, S.B., Jang, H.B., Cha, I.S., Ha, M.A., Kim, Y.R., Park, Y.K., Dalvi, R.S., Kang, B.J., et al. (2009). Phenotypic characteristics of Streptococcus iniae and Streptococcus parauberis isolated from olive flounder (Paralichthys olivaceus). FEMS Microbiol. Lett. 293, 20-27.   DOI
13 Mora, D., Ricci, G., Guglielmetti, S., Daffonchio, D., and Fortina, M.G. (2003). 16S-23S rRNA intergenic spacer region sequence variation in Streptococcus thermophilus and related dairy streptococci and development of a multiplex ITS-SSCP analysis for their identification. Microbiology 149, 807-813.   DOI
14 Muzquiz, J., Royo, F., Ortega, C., De Blas, I., Ruiz, I., and Alonso, J. (1999). Pathogenicity of streptococcosis in rainbow trout (Oncorhynchus mykiss): dependence on age of diseased fish. Bull. Eur. Ass. Fish Pathol. 19, 114-119.
15 Kwong, J.C., McCallum, N., Sintchenko, V., and Howden, B.P. (2015). Whole genome sequencing in clinical and public health microbiology. Pathology 47, 199-210.   DOI
16 Nho, S.W., Hikima, J., Park, S.B., Jang, H.B., Cha, I.S., Yasuike, M., Nakamura, Y., Fujiwara, A., Sano, M., Kanai, K., et al. (2013). Comparative genomic characterization of three Streptococcus parauberis strains in fish pathogen, as assessed by wide-genome analyses. PLoS One 8, e80395.   DOI
17 Nielsen, X.C., Justesen, U.S., Dargis, R., Kemp, M., and Christensen, J.J. (2009). Identification of clinically relevant nonhemolytic Streptococci on the basis of sequence analysis of 16S-23S intergenic spacer region and partial gdh gene. J. Clin. Microbiol. 47, 932-939.   DOI
18 Chain, P.S., Grafham, D.V., Fulton, R.S., Fitzgerald, M.G., Hostetler, J., Muzny, D., Ali, J., Birren, B., Bruce, D.C., Buhay, C., et al. (2009). Genomics. Genome project standards in a new era of sequencing. Science 326, 236-237.   DOI
19 Carson, J., Gudkovs, N., and Austin, B. (1993). Characteristics of an Enterococcus-like bacterium from Australia and South Africa, pathogenic for rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 16, 381-388.   DOI
20 Carey-Ann, D., Burnhama, and Gregory, J.T. (2003). Virulence factors of group B streptococci. Rev. Med. Microbiol. 14, 109-118.   DOI
21 Chang, P., and Plumb, J. (1996). Effects of salinity on Streptococcus infection of Nile tilapia, Oreochromis niloticus. J. Appl. Aquaculture. 6, 39-45.
22 Cheng, S., Hu, Y.H., Jiao, X.D., and Sun, L. (2010). Identification and immunoprotective analysis of a Streptococcus iniae subunit vaccine candidate. Vaccine 28, 2636-2641.   DOI
23 Chettri, J.K., Raida, M.K., Holten-Andersen L., Kania, P.W., and Buchmnann, K. (2011). PAMP induced expression of immune relevant genes in head kidney leukocytes of rainbow trout (Oncorhynchus mykiss) Dev. Comp. Immunol. 35, 476-482.   DOI
24 Dodson, S., Maurer, J., and Shotts, E. (1999). Biochemical and molecular typing of Streptococcus iniae isolated from fish and human cases. J. Fish Dis. 22, 331-336.   DOI
25 Nishiki, I., Noda, M., Itami, T., and Yoshida, T. (2010). Homogeneity of Streptococcus dysgalactiae from farmed amberjack Seriola dumerili in Japan. Fish. Sci. 76, 661-668.   DOI
26 Clarridge, J.E., Attorri, S.M., Zhang, Q., and Bartell, J. (2001). 16S ribosomal DNA sequence analysis distinguishes biotypes of Streptococcus bovis: Streptococcus bovis Biotype II/2 is a separate genospecies and the predominant clinical isolate in adult males. J. Clin. Microbiol. 39, 1549-1552.   DOI
27 Darwish, A.M., and Hobbs, M.S. (2005). Laboratory efficacy of amoxicillin for the control of Streptococcus iniae infection in blue tilapia. J. Aquat. Anim. Health. 17, 197-202.   DOI
28 Delannoy, C., Zadoks, R., Crumlish, M., Rodgers, D., Lainson, F., Ferguson, H., Turnbull, J., and Fontaine, M. (2016). Genomic comparison of virulent and non-virulent Streptococcus agalactiae in fish. J. Fish Dis. 39, 13-29.   DOI
29 Diler, O., Altun, S., Adiloglu, A., Kubilay, A., and Istklt, B. (2002). First occurrence of Streptococcosis affecting farmed rainbow trout (Oncorhynchus mykiss) in Turkey. Bull. Eur. Ass. Fish Pathol. 22, 21-26.
30 Dobrindt, U., and Hacker, J. (2001). Whole genome plasticity in pathogenic bacteria. Curr. Opin. Microbiol. 4, 550-557.   DOI
31 Eldar, A., Bejerano, Y., Livoff, A., Horovitcz, A., and Bercovier, H. (1995). Experimental streptococcal meningo-encephalitis in cultured fish. Vet. Microbiol. 43, 33-40.   DOI
32 Eyngor, M., Zlotkin, A., Ghittino, C., Prearo, M., Douet, D.-G., Chilmonczyk, S., and Eldar, A. (2004). Clonality and diversity of the fish pathogen Lactococcus garvieae in Mediterranean countries. Appl. Environ. Microbiol. 70, 5132-5137.   DOI
33 Facklam, R., Elliott, J., Shewmaker, L., and Reingold, A. (2005). Identification and characterization of sporadic isolates of Streptococcus iniae isolated from humans. J. Clin. Microbiol. 43, 933-937.   DOI
34 Ravelo, C., Magarinos, B., Romalde, J.L., and Toranzo, A.E. (2001). Conventional versus miniaturized systems for the phenotypic characterization of Lactococcus garvieae strains. Bull. Eur. Ass. Fish Pathol. 21, 136-144.
35 Park, Y.K., Nho, S.W., Shin, G.W., Park, S.B., Jang, H.B., Cha, I.S., Ha, M.A., Kim, Y.R., Dalvi, R.S., Kang, B.J., et al. (2009). Antibiotic susceptibility and resistance of Streptococcus iniae and Streptococcus parauberis isolated from olive flounder (Paralichthys olivaceus). Vet. Microbiol. 136, 76-81.   DOI
36 Pereira, U., Mian, G., Oliveira, I., Benchetrit, L., Costa, G., and Figueiredo, H. (2010). Genotyping of Streptococcus agalactiae strains isolated from fish, human and cattle and their virulence potential in Nile tilapia. Vet. Microbiol. 140, 186-192.   DOI
37 Rajagopal L. (2009). Understanding the regulation of Group B Streptococcal virulence factors. Future Microbiol. 4, 201-221.   DOI
38 Ruiz-Zarzuela, I., de Bias, I., Girones, O., Ghittino, C., and Muazquiz, J. (2005). Isolation of Vagococcus salmoninarum in rainbow trout, Oncorhynchus mykiss (Walbaum), broodstocks: characterization of the pathogen. Vet. Res. Commun. 29, 553-562.   DOI
39 Sakai, M. (1999). Current research status of fish immunostimulants. Aquaculture. 172, 63-92.   DOI
40 Sakala, R., Hayashidani, H., Kato, Y., Kaneuchi, C., and Ogawa, M. (2002). Isolation and characterization of Lactococcus piscium strains from vacuum-packaged refrigerated beef. J. Appl. Microbiol. 92, 173-179.   DOI
41 Shoemaker, C.A., Evans, J.J., and Klesius, P.H. (2000). Density and dose: factors affecting mortality of Streptococcusiniae infected tilapia (Oreochromisniloticus). Aquaculture 188, 229-235.   DOI
42 Hastein, T., Gudding, R., and Evensen, O. (2005). Bacterial vaccines for fish--an update of the current situation worldwide. Dev. Biol. (Basel). 121, 55-74.
43 Fuller, J.D., Bast, D.J., Nizet, V., Low, D.E., and de Azavedo, J.C. (2001). Streptococcus iniae virulence is associated with a distinct genetic profile. Infect. Immun. 69, 1994-2000.   DOI
44 Gao, X.Y., Zhi, X.Y., Li, H.W., Klenk, H.P., and Li, WJ.. (2014). Comparative genomics of the bacterial genus Streptococcus illuminates evolutionary implications of species groups. PLoS One. 9, e101229   DOI
45 Ghittino, C., Accornero, P., Prearo, M., Rogato, F., Zlotkin, A., and Eldar, A. (1999). Coldwater streptococcoses in salmonids, with particular reference to Vagococcus salmoninarum infection, Proceedings of Workshop in Fish Streptococcoses, IZS-State Veterinary Institute, Turin, Italy.
46 Holmer, M. (2010). Environmental issues of fish farming in offshore waters: perspectives, concerns and research needs. Aquac. Environ. Interact. 1, 57-70.   DOI
47 Johri, A.K., Paoletti, L.C., Glaser, P., Dua, M., Sharma, P.K., Grandi, G., and Rappuoli, R. (2006). Group B Streptococcus: global incidence and vaccine development. Nat. Rev. Microbiol. 4, 932-942.   DOI
48 Jolley, K.A., Bliss, C.M., Bennett, J.S., Bratcher, H.B., Brehony, C., Colles, F.M., Wimalarathna, H., Harrison, O.B., Sheppard, S.K., Cody, A.J., et al. (2012). Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology 158, 1005-1015.   DOI
49 Klesius, P., Evans, J., Shoemaker, C., Yeh, H., Goodwin, A., Adams, A., and Thompson, K. (2006). Rapid detection and identification of Streptococcus iniae using a monoclonal antibody-based indirect fluorescent antibody technique. Aquaculture 258, 180-186.   DOI
50 Shoemaker, C.A., Klesius, P.H., and Evans, J.J. (2001). Prevalence of Streptococcus iniae in tilapia, hybrid striped bass, and channel catfish on commercial fish farms in the United States. Am. J. Vet. Res. 62, 174-177.   DOI
51 Sommerset, I., Krossoy, B., Biering, E., and Frost, P. (2005). Vaccines for fish in aquaculture. Exp. Rev. Vaccines. 4, 89-101.   DOI
52 Springman, A.C., Lacher, D.W., Wu, G., Milton, N., Whittam, T.S., Davies, H.D., and Manning S.D. (2009). Selection, Recombination, and Virulence gene diversity among Group b Streptococcal Genotypes. J. Bacteriol. 17, 5419-5427.
53 Teng, L.J., Hsueh, P.R., Tsai, J.C., Chen, P.W., Hsu, J.C., Lai, H.C., Lee, C.N., and Ho, S.W. (2002). groESL sequence determination, phylogenetic analysis, and species differentiation for viridans group streptococci. J. Clin. Microbiol. 40, 3172-3178.   DOI
54 Toranzo, A.E., Magarinos, B., and Romalde, J.L. (2005). A review of the main bacterial fish diseases in mariculture systems. Aquaculture 246, 37-61.   DOI
55 Achtman, M. (2008). Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu. Rev. Microbiol. 62, 53-70.   DOI
56 Tung, S.K., Teng, L.J., Vaneechoutte, M., Chen, H.M., and Chang, T.C. (2007) Identification of species of Abiotrophia, Enterococcus, Granulicatella and Streptococcus by sequence analysis of the ribosomal 16S-23S intergenic spacer region J. Med. Microbiol. 56, 504-513   DOI
57 Vendrell, D., Balcazar, J.L., Ruiz-Zarzuela, I., De Blas, I., Girones, O., Muzquiz, J.L. (2006). Lactococcus garvieae in fish: a review. Comp. Immunol. Microbiol. Infect. Dis. 29, 177-198.   DOI
58 Villegas, J.G., Fukada, H., Masumoto, T., and Hosokawa, H. (2006). Effect of Dietary Immunostimulants on Some Innate Immune Responses and Disease Resistance against Edwardsiella tarda Infection in Japanese Flounder (Paralichthys olivaceus). Aquaculture Science 2, 153-162.
59 Abdelsalam, M., Chen, S.-C., and Yoshida, T. (2010). Dissemination of streptococcal pyrogenic exotoxin G (spegg) with an IS-like element in fish isolates of Streptococcus dysgalactiae. FEMS Microbiol. Lett. 309, 105-113.
60 Abdelsalam, M., Asheg, A., and Eissa, A.E. (2013). Streptococcus dysgalactiae: An emerging pathogen of fishes and mammals. Int. J. Vet. Sci. Med. 1, 1-6.   DOI
61 Agnew, W., and Barnes, A.C. (2007). Streptococcus iniae: an aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccination. Vet. Microbiol. 122, 1-15.   DOI
62 Al-Harbi, A.H. (2011). Molecular characterization of Streptococcus iniae isolated from hybrid tilapia (Oreochromis $niloticus^x$ Oreochromis aureus). Aquaculture 312, 15-18.   DOI
63 Aguilera, S.E., Cole, J., Finkbeiner, E.M., Cornu, E.L., Ban, N.C., Carr, M.H., Cinner, J.E., Crowder, L.B., Gelcich, S., Hicks, C.C., et al. (2015). Managing small-scale commercial fisheries for adaptive capacity: insights from dynamic social-ecological drivers of change in monterey bay. PLoS One 10, e0118992.   DOI
64 Lowe B.A., Miller J.D., and Neely M.N. (2007). Analysis of the polysaccharide capsule of the systemic pathogen Streptococcus iniae and its implications in virulence. Infect. Immun. 75, 1255-1264.   DOI
65 Klijn, N., Weerkamp, A.H., and de Vos, W.M. (1991). Identification of mesophilic lactic acid bacteria by using polymerase chain reaction-amplified variable regions of 16S rRNA and specific DNA probes. Appl. Environ. Microbiol. 57, 3390-3393.
66 Lau, S.K., Woo, P.C., Luk, W.K., Fung, A.M., Hui, W.T., Fong, A.H., Chow, C.W., Wong, S.S., and Yuen, K.Y. (2006). Clinical isolates of Streptococcus iniae from Asia are more mucoid and beta-hemolytic than those from North America. Diagn. Microbiol. Infect. Dis. 54, 177-181.   DOI
67 Li, L., Wang, R., Liang, W., Huang, T., Huang, Y., Luo, F., Lei, A., Chen, M., and Gan, X. (2015). Development of live attenuated Streptococcus agalactiae vaccine for tilapia via continuous passage in vitro. Fish Shellfish Immunol. 45, 955-963.   DOI
68 Magnadottir, B. (2006). Innate immunity of fish (overview). Fish Shellfish Immunol. 20, 137-151.   DOI
69 Maiden, M.C. (2006). Multilocus sequence typing of bacteria. Annu. Rev. Microbiol. 60, 561-588.   DOI
70 Medini, D., Serruto, D., Parkhill, J., Relman, D.A., Donati, C., Moxon, R., Falkow, S., Rappuoli, R. (2008). Microbiology in the post-genomic era. Nat. Rev. Microbiol. 6, 419-430.   DOI
71 Mishra, A., Nam, G.H., Gim, J.A., Seong, M., Choe, Y., Lee, H.E., Jo, A., Kim, S., Kim, D.H., Cha, H.J., et al. (2017). Comparative evaluation of 16S rRNA gene in world-wide strains of Streptococcus iniae and Streptococcus parauberis for early diagnostic marker. Genes Genom. 39 , 779-791.   DOI
72 Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. (2017). Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613-1617   DOI
73 Weinstein, M.R., Litt, M., Kertesz, D.A., Wyper, P., Rose, D., Coulter, M., McGeer, A., Facklam, R., Ostach, C., Willey, B.M., et al. (1997). Invasive infections due to a fish pathogen, Streptococcus iniae. S. iniae Study Group. N. Engl. J. Med. 337, 589-594.   DOI
74 Woo, S.H., and Park, S.I. (2014). Effects of phosphoglucomutase gene (PGM) in Streptococcus parauberis on innate immune response and pathogenicity of olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol. 41, 317-325.   DOI
75 Wren, B.W. (2000). Microbial genome analysis: insights into virulence, host adaptation and evolution. Nat. Rev. Genet. 1, 30-39.   DOI
76 Zlotkin, A., Chilmonczyk, S., Eyngor, M., Hurvitz, A., Ghittino, C., and Eldar, A. (2003). Trojan horse effect: phagocyte-mediated Streptococcus iniae infection of fish. Infect. Immun. 71, 2318-2325.   DOI