• 제목/요약/키워드: Backward Euler method

검색결과 33건 처리시간 0.025초

동압 계수의 불연속성을 이용한 내면파의 수치해석 (Internal Wave Computations based on a Discontinuity in Dynamic Pressure)

  • 신상묵;김동훈
    • 대한조선학회논문집
    • /
    • 제41권4호
    • /
    • pp.17-29
    • /
    • 2004
  • Internal waves are computed using a ghost fluid method on an unstructured grid. Discontinuities in density and dynamic pressure are captured in one cell without smearing or oscillations along a multimaterial interface. A time-accurate incompressible Navier-Stokes/Euler solver is developed based on a three-point backward difference formula for the physical time marching. Artificial compressibility is introduced with respect to pseudotime and an implicit method is used for the pseudotime iteration. To track evolution of an interface, a level set function is coupled with the governing equations. Roe's flux difference splitting method is used to calculate numerical fluxes of the coupled equations. To get higher order accuracy, dependent variables are reconstructed based on gradients which are calculated using Gauss theorem. For each edge crossing an interface, dynamic pressure is assigned for a ghost node to enforce the continuity of total pressure along the interface. Solitary internal waves are computed and the results are compared with other computational and experimental results.

INTERNAL FEEDBACK CONTROL OF THE BENJAMIN-BONA-MAHONY-BURGERS EQUATION

  • Piao, Guang-Ri;Lee, Hyung-Chen
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권3호
    • /
    • pp.269-277
    • /
    • 2014
  • A numerical scheme is proposed to control the BBMB (Benjamin-Bona-Mahony-Burgers) equation, and the scheme consists of three steps. Firstly, BBMB equation is converted to a finite set of nonlinear ordinary differential equations by the quadratic B-spline finite element method in spatial. Secondly, the controller is designed based on the linear quadratic regulator (LQR) theory; Finally, the system of the closed loop compensator obtained on the basis of the previous two steps is solved by the backward Euler method. The controlled numerical solutions are obtained for various values of parameters and different initial conditions. Numerical simulations show that the scheme is efficient and feasible.

탄성-완전-소성 보강쉘 구조물의 설계민감도해석 (Design Sensitivity Analysis of Elasto-perfectly-plastic Structure for Stiffened Shell Structure)

  • 정재준;이태희;임장근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.746-752
    • /
    • 2001
  • Design sensitivity analysis for nonlinear structural problems has been emerged in the last decade as a glowing area of engineering research. As a result, theoretical formulations and computational algorithms have already developed for design sensitivity of nonlinear structural problems. There is not enough research for practical nonlinear problems using multi-element, due to difficulties of implementation into FEA. Therefore, nonlinear response analysis for stiffened shell which consists of Mindlin plate and Timoshenko beam, was considered. Specially, it presents the backward-Euler method which is adopted to describe an exact yield state in the stress computation procedure. Then, design sensitivity analysis of nonlinear structures, particularly elasto-perfectly-plastic structure, is developed using direct differentiation method. The accuracy of the developed sensitivity analysis was compared with the central finite difference method. Finally, on the basis of above results, design improvement for stiffened shell is suggested.

  • PDF

비정렬격자 압력기준 유동해석기법을 이용한 정상 및 비정상 유동해석 (Steady and Unsteady flows with Pressure-based Unstructured-grid Navier-Stokes Solver PUNS)

  • 김종태
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.98-105
    • /
    • 1999
  • The Pressure-based Unstructured-grid Navier-Stokes Solver PUNS-2/3D for incompressible steady and unsteady viscous flows has been developed. It is based on nonstaggered cell-centered finite volume method. Second-order upwind scheme with least-square reconstruction is used for convective fluxes. The SIMPLE method is implemented to couple the pressure and velocity fields. And the time derivatives in the momentum equations are discretised using a second-order Euler backward-differencing scheme. The discretised linear equations are solved by the preconditioned Biconjugate Gradient Stabilized method(Bi-CGSTAB). The developed solver is applied to validation problems using hybrid meshes.

  • PDF

변형률 공간에서 변형률속도 및 온도를 고려한 구성방정식의 개선된 적분방법 (Modified Integration Algorithm on the Strain-Space for Rate and Temperature Dependent Elasto-Plastic Constitutive model)

  • 조상순;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.272-275
    • /
    • 2007
  • This paper is concerned with modified integration algorithm on the strain-space for rate and temperature dependent elasto-plastic constitutive relations in order to obtain more accurate results in numerical implementation. The proposed algorithm is integrated analytically using integration by part and chain rule and then is applied to the 2-stage Lobatto IIIA with second-order accuracy. It has advantage that is able to consider the convective stress rates on the yield surface of the strain-space. Also this paper is carried out the iteration procedure using the Newton-Raphson method to enforce consistency at the end of the step. And the performance of the proposed algorithm for rate and temperature dependent constitutive relation is illustrated by means of analysis of adiabatic shear bands.

  • PDF

PARAMETRIC INVESTIGATIONS ON THE DOUBLE DIFFUSIVE CONVECTION IN TRIANGULAR CAVITY

  • Kwon, SunJoo;Oh, SeYoung;Yun, Jae Heon;Chung, Sei-Young
    • 충청수학회지
    • /
    • 제20권4호
    • /
    • pp.419-432
    • /
    • 2007
  • Double-diffusive convection inside a triangular porous cavity is studied numerically. Galerkin finite element method is adopted to derive the discrete form of the governing differential equations. The first-order backward Euler scheme is used for temporal discretization with the second-order Adams-Bashforth scheme for the convection terms in the energy and species conservation equations. The Boussinesq-Oberbeck approximation is used to calculate the density dependence on the temperature and concentration fields. A parametric study is performed with the Lewis number, the Rayleigh number, the buoyancy ratio, and the shape of the triangle. The effect of gravity orientation is considered also. Results obtained include the flow, temperature, and concentration fields. The differences induced by varying physical parameters are analyzed and discussed. It is found that the heat transfer rate is sensitive to the shape of the triangles. For the given geometries, buoyancy ratio and Rayleigh numbers are the dominating parameters controlling the heat transfer.

  • PDF

QUADRATURE BASED FINITE ELEMENT METHODS FOR LINEAR PARABOLIC INTERFACE PROBLEMS

  • Deka, Bhupen;Deka, Ram Charan
    • 대한수학회보
    • /
    • 제51권3호
    • /
    • pp.717-737
    • /
    • 2014
  • We study the effect of numerical quadrature in space on semidiscrete and fully discrete piecewise linear finite element methods for parabolic interface problems. Optimal $L^2(L^2)$ and $L^2(H^1)$ error estimates are shown to hold for semidiscrete problem under suitable regularity of the true solution in whole domain. Further, fully discrete scheme based on backward Euler method has also analyzed and optimal $L^2(L^2)$ norm error estimate is established. The error estimates are obtained for fitted finite element discretization based on straight interface triangles.

수정된 마디해석법을 사용한 HVDC 시스템 시뮬레이션을 위한 Genetic 알고리즘에 의해 최적화된 PI 컨트롤러 (PI controller for HVDC system simulation based on Modified nodal analysis method optimized by Genetic Algorithms)

  • 양정제;강현성;안태천;박인규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.252-254
    • /
    • 2006
  • The recent improvement in the performance of digital processor, the application of control technology, which used in the HVDC(High Voltage Direct Current) system with the digital processors, has increased. Having this research development as the basis, this paper presents an achievement of progression by tuning the parameter of PI controller based on Genetic Algorithms(GAs) and by controlling with PI controller with a developed simulator by applying the Matrix operating function, voltage source switching element, modified nodal analysis which can include transformer and the backward Euler which does not create the problem of numerical oscillation. As a result, I expect this development in the simulator HVDC System to bring more application in the field of control technology research with an expanded practicality.

  • PDF

2차원 혼합격자를 이용한 난류유동 계산 (Turbulent Flow Calculations Using an Unstructured Hybrid Meshes)

  • 김주성;오우섭;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.90-97
    • /
    • 1999
  • An implicit turbulent flow solver is developed for 2-D unstructured hybrid meshes. Spatial discretization is accomplished by a cell-centered finite volume formulation using an upwind flux differencing. Time is advanced by an implicit backward Euler time stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one equation model, which is coupled with wall function. The numerical method is applied for flows on a flat plate, the NACA 0012 airfoil, and the Douglas 3 element airfoil. The results are compared with experimental data.

  • PDF

Vibration analysis of a beam on a nonlinear elastic foundation

  • Karahan, M.M. Fatih;Pakdemirli, Mehmet
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.171-178
    • /
    • 2017
  • Nonlinear vibrations of an Euler-Bernoulli beam resting on a nonlinear elastic foundation are discussed. In search of approximate analytical solutions, the classical multiple scales (MS) and the multiple scales Lindstedt Poincare (MSLP) methods are used. The case of primary resonance is investigated. Amplitude and phase modulation equations are obtained. Steady state solutions are considered. Frequency response curves obtained by both methods are contrasted with each other with respect to the effect of various physical parameters. For weakly nonlinear systems, MS and MSLP solutions are in good agreement. For strong hardening nonlinearities, MSLP solutions exhibit the usual jump phenomena whereas MS solutions are not reliable producing backward curves which are unphysical.