• 제목/요약/키워드: Background Machine Learning

검색결과 103건 처리시간 0.023초

Design Of Intrusion Detection System Using Background Machine Learning

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.149-156
    • /
    • 2019
  • The existing subtract image based intrusion detection system for CCTV digital images has a problem that it can not distinguish intruders from moving backgrounds that exist in the natural environment. In this paper, we tried to solve the problems of existing system by designing real - time intrusion detection system for CCTV digital image by combining subtract image based intrusion detection method and background learning artificial neural network technology. Our proposed system consists of three steps: subtract image based intrusion detection, background artificial neural network learning stage, and background artificial neural network evaluation stage. The final intrusion detection result is a combination of result of the subtract image based intrusion detection and the final intrusion detection result of the background artificial neural network. The step of subtract image based intrusion detection is a step of determining the occurrence of intrusion by obtaining a difference image between the background cumulative average image and the current frame image. In the background artificial neural network learning, the background is learned in a situation in which no intrusion occurs, and it is learned by dividing into a detection window unit set by the user. In the background artificial neural network evaluation, the learned background artificial neural network is used to produce background recognition or intrusion detection in the detection window unit. The proposed background learning intrusion detection system is able to detect intrusion more precisely than existing subtract image based intrusion detection system and adaptively execute machine learning on the background so that it can be operated as highly practical intrusion detection system.

Underwater Acoustic Research Trends with Machine Learning: General Background

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • 한국해양공학회지
    • /
    • 제34권2호
    • /
    • pp.147-154
    • /
    • 2020
  • Underwater acoustics that is the study of the phenomenon of underwater wave propagation and its interaction with boundaries, has mainly been applied to the fields of underwater communication, target detection, marine resources, marine environment, and underwater sound sources. Based on the scientific and engineering understanding of acoustic signals/data, recent studies combining traditional and data-driven machine learning methods have shown continuous progress. Machine learning, represented by deep learning, has shown unprecedented success in a variety of fields, owing to big data, graphical processor unit computing, and advances in algorithms. Although machine learning has not yet been implemented in every single field of underwater acoustics, it will be used more actively in the future in line with the ongoing development and overwhelming achievements of this method. To understand the research trends of machine learning applications in underwater acoustics, the general theoretical background of several related machine learning techniques is introduced in this paper.

Comparison of Machine Learning-Based Radioisotope Identifiers for Plastic Scintillation Detector

  • Jeon, Byoungil;Kim, Jongyul;Yu, Yonggyun;Moon, Myungkook
    • Journal of Radiation Protection and Research
    • /
    • 제46권4호
    • /
    • pp.204-212
    • /
    • 2021
  • Background: Identification of radioisotopes for plastic scintillation detectors is challenging because their spectra have poor energy resolutions and lack photo peaks. To overcome this weakness, many researchers have conducted radioisotope identification studies using machine learning algorithms; however, the effect of data normalization on radioisotope identification has not been addressed yet. Furthermore, studies on machine learning-based radioisotope identifiers for plastic scintillation detectors are limited. Materials and Methods: In this study, machine learning-based radioisotope identifiers were implemented, and their performances according to data normalization methods were compared. Eight classes of radioisotopes consisting of combinations of 22Na, 60Co, and 137Cs, and the background, were defined. The training set was generated by the random sampling technique based on probabilistic density functions acquired by experiments and simulations, and test set was acquired by experiments. Support vector machine (SVM), artificial neural network (ANN), and convolutional neural network (CNN) were implemented as radioisotope identifiers with six data normalization methods, and trained using the generated training set. Results and Discussion: The implemented identifiers were evaluated by test sets acquired by experiments with and without gain shifts to confirm the robustness of the identifiers against the gain shift effect. Among the three machine learning-based radioisotope identifiers, prediction accuracy followed the order SVM > ANN > CNN, while the training time followed the order SVM > ANN > CNN. Conclusion: The prediction accuracy for the combined test sets was highest with the SVM. The CNN exhibited a minimum variation in prediction accuracy for each class, even though it had the lowest prediction accuracy for the combined test sets among three identifiers. The SVM exhibited the highest prediction accuracy for the combined test sets, and its training time was the shortest among three identifiers.

Feasibility Study of Google's Teachable Machine in Diagnosis of Tooth-Marked Tongue

  • Jeong, Hyunja
    • 치위생과학회지
    • /
    • 제20권4호
    • /
    • pp.206-212
    • /
    • 2020
  • Background: A Teachable Machine is a kind of machine learning web-based tool for general persons. In this paper, the feasibility of Google's Teachable Machine (ver. 2.0) was studied in the diagnosis of the tooth-marked tongue. Methods: For machine learning of tooth-marked tongue diagnosis, a total of 1,250 tongue images were used on Kaggle's web site. Ninety percent of the images were used for the training data set, and the remaining 10% were used for the test data set. Using Google's Teachable Machine (ver. 2.0), machine learning was performed using separated images. To optimize the machine learning parameters, I measured the diagnosis accuracies according to the value of epoch, batch size, and learning rate. After hyper-parameter tuning, the ROC (receiver operating characteristic) analysis method determined the sensitivity (true positive rate, TPR) and specificity (false positive rate, FPR) of the machine learning model to diagnose the tooth-marked tongue. Results: To evaluate the usefulness of the Teachable Machine in clinical application, I used 634 tooth-marked tongue images and 491 no-marked tongue images for machine learning. When the epoch, batch size, and learning rate as hyper-parameters were 75, 0.0001, and 128, respectively, the accuracy of the tooth-marked tongue's diagnosis was best. The accuracies for the tooth-marked tongue and the no-marked tongue were 92.1% and 72.6%, respectively. And, the sensitivity (TPR) and specificity (FPR) were 0.92 and 0.28, respectively. Conclusion: These results are more accurate than Li's experimental results calculated with convolution neural network. Google's Teachable Machines show good performance by hyper-parameters tuning in the diagnosis of the tooth-marked tongue. We confirmed that the tool is useful for several clinical applications.

Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • 한국해양공학회지
    • /
    • 제34권3호
    • /
    • pp.227-236
    • /
    • 2020
  • Underwater acoustics, which is the domain that addresses phenomena related to the generation, propagation, and reception of sound waves in water, has been applied mainly in the research on the use of sound navigation and ranging (SONAR) systems for underwater communication, target detection, investigation of marine resources and environment mapping, and measurement and analysis of sound sources in water. The main objective of remote sensing based on underwater acoustics is to indirectly acquire information on underwater targets of interest using acoustic data. Meanwhile, highly advanced data-driven machine-learning techniques are being used in various ways in the processes of acquiring information from acoustic data. The related theoretical background is introduced in the first part of this paper (Yang et al., 2020). This paper reviews machine-learning applications in passive SONAR signal-processing tasks including target detection/identification and localization.

Infrared and Visible Image Fusion Based on NSCT and Deep Learning

  • Feng, Xin
    • Journal of Information Processing Systems
    • /
    • 제14권6호
    • /
    • pp.1405-1419
    • /
    • 2018
  • An image fusion method is proposed on the basis of depth model segmentation to overcome the shortcomings of noise interference and artifacts caused by infrared and visible image fusion. Firstly, the deep Boltzmann machine is used to perform the priori learning of infrared and visible target and background contour, and the depth segmentation model of the contour is constructed. The Split Bregman iterative algorithm is employed to gain the optimal energy segmentation of infrared and visible image contours. Then, the nonsubsampled contourlet transform (NSCT) transform is taken to decompose the source image, and the corresponding rules are used to integrate the coefficients in the light of the segmented background contour. Finally, the NSCT inverse transform is used to reconstruct the fused image. The simulation results of MATLAB indicates that the proposed algorithm can obtain the fusion result of both target and background contours effectively, with a high contrast and noise suppression in subjective evaluation as well as great merits in objective quantitative indicators.

광역자치단체의 기계학습 행정서비스 업무유형에 관한 연구 -서울시를 중심으로- (A Study on the Work Type of Machine Learning Administrative Service in Metropolitan Government)

  • 하충열;정진택
    • 디지털융복합연구
    • /
    • 제18권12호
    • /
    • pp.29-36
    • /
    • 2020
  • 본 연구의 배경은 최근 포스트 코로나시대의 비대면 행정서비스를 위한 주요 정책수단으로 기계학습 행정서비스가 주목을 받고 있는 가운데 기계학습 행정서비스를 시범적으로 운영하고 있는 서울특별시를 대상으로 기계학습 행정서비스 도입 시 효과가 예상되는 업무유형에 대하여 살펴보았다. 연구방법으로는 2020년 7월 한 달 동안 기계학습 기반 행정서비스를 활용하거나 수행하고 있는 서울시 행정조직을 대상으로 설문조사를 실시하여 조직단위별 도입 가능한 기계학습 행정서비스 및 응용서비스를 분석하고, 지도학습, 비지도학습, 강화학습 등 기계학습 행정서비스의 업무유형별 특성을 분석하였다. 그 결과, 지도학습 및 비지도학습 업무유형의 특성에서 유의미한 차이가 있는 것으로 나타났고, 특히 강화학습 업무유형이 기계학습 행정서비스에 가장 적합한 업무적 특성요인을 포함하고 있는 것으로 밝혀져 그에 대한 정책적 시사점을 도출하였다. 본 연구결과는 기계학습 행정서비스를 도입하고자 하는 실무자들에게는 참고자료로 제공될 수 있고, 향후 기계학습 행정서비스를 연구하고자 하는 연구자들에게는 연구의 기초자료로 활용될 수 있을 것이다.

Machine Learning Prediction for the Recurrence After Electrical Cardioversion of Patients With Persistent Atrial Fibrillation

  • Soonil Kwon;Eunjung Lee;Hojin Ju;Hyo-Jeong Ahn;So-Ryoung Lee;Eue-Keun Choi;Jangwon Suh;Seil Oh;Wonjong Rhee
    • Korean Circulation Journal
    • /
    • 제53권10호
    • /
    • pp.677-689
    • /
    • 2023
  • Background and Objectives: There is limited evidence regarding machine-learning prediction for the recurrence of atrial fibrillation (AF) after electrical cardioversion (ECV). This study aimed to predict the recurrence of AF after ECV using machine learning of clinical features and electrocardiograms (ECGs) in persistent AF patients. Methods: We analyzed patients who underwent successful ECV for persistent AF. Machine learning was designed to predict patients with 1-month recurrence. Individual 12-lead ECGs were collected before and after ECV. Various clinical features were collected and trained the extreme gradient boost (XGBoost)-based model. Ten-fold cross-validation was used to evaluate the performance of the model. The performance was compared to the C-statistics of the selected clinical features. Results: Among 718 patients (mean age 63.5±9.3 years, men 78.8%), AF recurred in 435 (60.6%) patients after 1 month. With the XGBoost-based model, the areas under the receiver operating characteristic curves (AUROCs) were 0.57, 0.60, and 0.63 if the model was trained by clinical features, ECGs, and both (the final model), respectively. For the final model, the sensitivity, specificity, and F1-score were 84.7%, 28.2%, and 0.73, respectively. Although the AF duration showed the best predictive performance (AUROC, 0.58) among the clinical features, it was significantly lower than that of the final machine-learning model (p<0.001). Additional training of extended monitoring data of 15-minute single-lead ECG and photoplethysmography in available patients (n=261) did not significantly improve the model's performance. Conclusions: Machine learning showed modest performance in predicting AF recurrence after ECV in persistent AF patients, warranting further validation studies.

Comparison of Machine Learning Analysis on Predictive Factors of Children's Planning-Organizing Executive Function by Income Level: Through Home Environment Quality and Wealth Factors

  • Lim, Hye-Kyung;Kim, Hyun-Ok;Park, Hae-Seon
    • 인간식물환경학회지
    • /
    • 제24권6호
    • /
    • pp.651-662
    • /
    • 2021
  • Background and objective: This study identifies whether children's planning-organizing executive function can be significantly classified and predicted by home environment quality and wealth factors. Methods: For empirical analysis, we used the data collected from the 10th Panel Study on Korean Children in 2017. Using machine learning tools such as support vector machine (SVM) and random forest (RF), we evaluated the accuracy of the model in which home environment factors classify and predict children's planning-organizing executive functions, and extract the relative importance of variables that determine these executive functions by income group. Results: First, SVM analysis shows that home environment quality and wealth factors show high accuracy in classification and prediction in all three groups. Second, RF analysis shows that estate had the highest predictive power in the high-income group, followed by income, asset, learning, reinforcement, and emotional environment. In the middle-income group, emotional environment showed the highest score, followed by estate, asset, reinforcement, and income. In the low-income group, estate showed the highest score, followed by income, asset, learning, reinforcement, and emotional environment. Conclusion: This study confirmed that home environment quality and wealth factors are significant factors in predicting children's planning-organizing executive functions.

귀밑샘 암종에서 생존 예측을 위한 임상병리 인자 분석 및 머신러닝 모델의 구축 (Clinico-pathologic Factors and Machine Learning Algorithm for Survival Prediction in Parotid Gland Cancer)

  • 곽승민;김세헌;최은창;임재열;고윤우;박영민
    • 대한두경부종양학회지
    • /
    • 제38권1호
    • /
    • pp.17-24
    • /
    • 2022
  • Background/Objectives: This study analyzed the prognostic significance of clinico-pathologic factors including comprehensive nodal factors in parotid gland cancers (PGCs) patients and constructed a survival prediction model for PGCs patients using machine learning techniques. Materials & Methods: A total of 131 PGCs patients were enrolled in the study. Results: There were 19 cases (14.5%) of lymph nodes (LNs) at the lower neck level and 43 cases (32.8%) involved multiple level LNs metastases. There were 2 cases (1.5%) of metastases to the contralateral LNs. Intraparotid LNs metastasis was observed in 6 cases (4.6%) and extranodal extension (ENE) findings were observed in 35 cases (26.7%). Lymphovascular invasion (LVI) and perineural invasion findings were observed in 42 cases (32.1%) and 49 cases (37.4%), respectively. Machine learning prediction models were constructed using clinico-pathologic factors including comprehensive nodal factors and Decision Tree and Stacking model showed the highest accuracy at 74% and 70% for predicting patient's survival. Conclusion: Lower level LNs metastasis and LNR have important prognostic significance for predicting disease recurrence and survival in PGCs patients. These two factors were used as important features for constructing machine learning prediction model. Our machine learning model could predict PGCs patient's survival with a considerable level of accuracy.