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Background: Identification of radioisotopes for plastic scintillation detectors is challenging be-
cause their spectra have poor energy resolutions and lack photo peaks. To overcome this weak-
ness, many researchers have conducted radioisotope identification studies using machine learn-
ing algorithms; however, the effect of data normalization on radioisotope identification has not 
been addressed yet. Furthermore, studies on machine learning-based radioisotope identifiers 
for plastic scintillation detectors are limited. 

Materials and Methods: In this study, machine learning-based radioisotope identifiers were 
implemented, and their performances according to data normalization methods were compared. 
Eight classes of radioisotopes consisting of combinations of 22Na, 60Co, and 137Cs, and the back-
ground, were defined. The training set was generated by the random sampling technique based 
on probabilistic density functions acquired by experiments and simulations, and test set was ac-
quired by experiments. Support vector machine (SVM), artificial neural network (ANN), and 
convolutional neural network (CNN) were implemented as radioisotope identifiers with six data 
normalization methods, and trained using the generated training set.

Results and Discussion: The implemented identifiers were evaluated by test sets acquired by 
experiments with and without gain shifts to confirm the robustness of the identifiers against the 
gain shift effect. Among the three machine learning-based radioisotope identifiers, prediction 
accuracy followed the order SVM > ANN > CNN, while the training time followed the order 
SVM > ANN > CNN.

Conclusion: The prediction accuracy for the combined test sets was highest with the SVM. 
The CNN exhibited a minimum variation in prediction accuracy for each class, even though it 
had the lowest prediction accuracy for the combined test sets among three identifiers. The SVM 
exhibited the highest prediction accuracy for the combined test sets, and its training time was 
the shortest among three identifiers.

Keywords: Plastic Scintillation Detector, Radioisotope Identifier, Machine Learning, Deep 
Learning, Data Normalization
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Introduction

Radiation portal monitors (RPM) are deployed in national facilities and borders, and 

operated to prevent sabotage of the facilities or nuclear smugglings through the bor-

ders. These mostly use plastic scintillators that have lower costs and larger detection 

volumes by up to tens of liters than other types of radiation detectors [1–5]. However, 

RPMs based on plastic scintillators are primarily used for counting applications to de-
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termine the existence of radioactive materials, because they 

have poor spectroscopic capabilities owing to their poor en-

ergy resolution and the absence of a photo peak. Therefore, 

RPMs that need capabilities of radioisotope identification 

must use inorganic scintillation detectors. To overcome the 

difficulty of radioisotope analysis using plastic scintillation 

detectors, several methods for pseudo-spectroscopy have 

been developed based on spectral signal processing, such as 

the energy windowing method [6–9], energy-weighted algo-

rithm [10, 11], and F-score method [12]. 

In addition, pattern recognition applications have been 

developed for radioisotope identification from radiation mea-

surements. Several researchers introduced radioisotope iden-

tification based on classical pattern recognition methods, 

such as data matching for silicon detectors [13], data match-

ing [13–15] and statistical data analysis [16–18] for inorganic 

scintillation detectors, and data matching [19, 20] for plastic 

scintillation detectors. Machine learning-based radioisotope 

identifiers have also been studied by several researchers. Stud-

ies on the quantitative analysis of radionuclides based on neu-

ral networks were introduced for silicon detectors [21, 22]. For 

inorganic scintillation detectors, several researchers conduct-

ed radioisotope identification using the support vector ma-

chine (SVM) [23] and variations of neural networks [24–30]. 

In the case of plastic scintillation detectors, artificial neural 

network (ANN)-based applications for radioisotope identifi-

cation have been introduced [31–34]. 

Machine learning-based radioisotope identifiers have ex-

hibited superior performance with measured spectra with a 

high level of uncertainties in various studies; however, the 

impact of data normalization on radioisotope identification 

using machine learning algorithms has not been addressed 

yet. Generally, data normalization for machine learning is 

known to make the optimization process, i.e., the model train-

ing process, faster and more accurate. Therefore, data normal-

ization is an essential aspect of machine learning algorithms. 

In this study, machine learning-based radioisotope identifi-

ers for plastic scintillators were implemented, and their per-

formances according to data normalization methods were 

compared. Eight classes were defined by combining 22Na, 
60Co, and 137Cs, including background. The SVM, ANN, and 

convolutional neural network (CNN) were implemented as 

radioisotope identifiers with six data normalization meth-

ods, and their performances were compared.

Materials and Methods

1. Machine Learning Approaches
In this paper, each machine learning algorithm was select-

ed for the following reasons. An SVM was selected, as it was 

the most powerful method for pattern recognition problems 

before deep learning became popular. The CNN was selected 

because it is a typical deep learning method. Although the 

performance of the CNN is well-known with regard to image 

data, the input data in this paper are not images, i.e., two-di-

mensional data, but spectra, i.e., one-dimensional data. In-

formation extracted by a convolution operation on input data 

is a sort of relationship near the subset of data, so it is possible 

to express the changes in different parts of the data. Conse-

quently, a convolution operation is useful for extracting fea-

tures in image data, e.g., edges where the change in pixel val-

ues occurs conspicuously, in image processing. However, the 

input data in this paper are the spectra of plastic scintillator; 

they do not show significant changes owing to their poor en-

ergy resolution and the absence of a photo peak. Therefore, 

the CNN might not be appropriate for radioisotope identifi-

cation from the spectra of plastic scintillation detector. To 

compare the CNN with other neural network approaches, an 

ANN was selected.

2. Data Set Generation
1)  Experimental environment used to measure gamma spectra

To measure spectra, a polystyrene scintillation detector that 

has a cylindrical shape of dimensions 30× 50 mm2 (diameter×  

height) was used, and a PMT (Model R2228 and E990-501; 

Hamamatsu Photonics, Shizuoka, Japan) was coupled with 

the detector sequentially. Optical grease (Model BC630; Saint-

Gobain, Cedex, France) was spread between the crystal and 

PMT for optical coupling. A signal processing module (DP5G; 

Amptek Inc., Bedford, MA, USA) was used as a preamp, shap-

ing amp and an MCA, and operating voltages were supplied 

by a high voltage supplier (Model NHQ 224M; ISEG, Rade-

berg, Germany). 

Gamma-ray spectra were measured in an aluminum dark 

box for optical shielding of the detector. The dark box consists 

of a 10 mm-thick aluminum layer with internal dimensions 

of 440× 400× 900 mm3 (width× height× length). At the door 

of the box, 1 mm-thick rubber layer was attached for optical 

shielding. Fig. 1 shows the dark box and experimental setup.
22Na, 60Co, and 137Cs were utilized as the gamma-ray sourc-

es. The gamma-ray sources were selected because of follow-
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ing reasons: 60Co and 137Cs were selected because they are the 

typical gamma-ray sources. Owing to the poor energy reso-

lution of plastic scintillators, it is challenging to distinguish 

between a combination of radiation sources that emit gam-

ma-rays with similar energies. 22Na emits photons that have 

an energy of 511 keV, which is similar to the energy of pho-

tons emitted by 137Cs, and 1,274 keV, which is similar to the 

energy of the photons emitted by 60Co. To confirm the identi-

fication performance for combinations that are not easily dis-

tinguishable from spectra with poor energy resolutions (e.g., 
137Cs & 60Co from 22Na & 60Co), 22Na was selected as an addi-

tional gamma-ray source. Table 1 shows a summary of class-

es for identification of radioisotopes.

To measure the spectra, the window of a detector was placed 

at the center of floor of the dark box. Owing to the different 

half-lives of each gamma emitter, the distances from the win-

dow of the detector to a source were adjusted until the num-

ber of counts was similar. By numerous trials, the distances 

were decided as 3 cm for 22Na, 5 cm for 60Co, and 7.5 cm for 
137Cs. 

2) Monte Carlo simulations

MCNP version 6.2 [35] was utilized for the Monte Carlo 

simulation. The experimental environment was implement-

ed in the simulation code. The compositions of materials were 

defined by referring to a report [36], and the densities of the 

materials were 2.6898 g/cm3 for aluminum layer, 1.2 g/cm3 

for rubber layer, and 1.06 g/cm3 for polystyrene scintillator. 

Each source was defined as a point source, the cutoff energy 

was set to 1 keV, and the history number was set to 108. The 

Gaussian energy broadening parameters for Monte Carlo 

simulations were calculated by a parametric optimization 

technique [37] and were set as follows: “a” is 0.0258, “b” is 

0.212, and “c” is 1.8678.

3) Dataset generation

In this study, we approached the identification of radioiso-

topes as a classification problem, and each application was 

trained by supervised learning. The training and test sets were 

generated as follows. The test set was derived from the exper-

imental results. In the experimental environment explained 

in Materials and Methods section (2.1 Experimental environ-

ment), the spectra for each class were measured 100 times 

for 10 seconds. The measured spectra had 512 channels, but 

counts from 1 to 10 channels were ignored because of the 

setting for low level discrimination. 

The training set was generated by a random sampling tech-

Fig. 1. Aluminum dark box and experimental setup. PMT, photomultiplier tube.

Table 1. Definition of Classes for the Radioisotope Identification 
Problem

Class 1 2 3 4 5 6 7 8

BKG ● ● ● ● ● ● ● ●
22Na ● ● ● ●
60Co ● ● ● ●
137Cs ● ● ● ●

BKG, background.
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nique. The measured and simulated probabilistic density 

functions (PDFs) were utilized to generate the training set. The 

PDFs were calculated as follows: in the experimental setup 

explained in Materials and Methods section (2.1 Experimen-

tal environment), the spectra for each class were measured 

for 30 minutes to obtain the fine spectra. For the fine spectra, 

each fine spectrum was normalized by dividing the integral 

value of each spectrum. In this manner, the measured PDFs of 

the counts for each energy bin were calculated for each class. 

By the Monte Carlo simulation explained in Materials and 

Methods section (2.2 Monte Carlo simulations), the spectra 

for each class were simulated. Channel to energy calibration 

was conducted by a parametric optimization technique [37]. 

As it is difficult to simulate realistic background spectra, the 

measured background spectrum was added to the simulated 

spectra for all classes. Then, simulated PDFs were also calcu-

lated analogously with the calculation of measured PDFs. 

Using the calculated PDFs, the training set was generated 

as follows: (1) the number of sampling counts varied between 

200 and 500 for the background class and between 1,000 and 

3,000 for other classes. These ranges were set by considering 

the total counts of each class in test set; (2) spectral data was 

randomly sampled based on the calculated PDFs up to the 

decided number of sampling counts; (3) the spectral data of 

450 channels were extracted from the original spectra of 512 

channels to enhance robustness against peak or gain shift ef-

fects. The initial channel for spectra extraction was randomly 

selected in a range of 11 to 30. In total, 500 spectra for each 

class (totally 4,000 for all classes) were sampled by the train-

ing set generation mentioned above and used as the training 

set for the machine learning algorithms. For each case, the 

training set consisted of 50% sampled data based on the mea-

sured PDFs and 50% based on simulated PDFs. Fig. 2 shows 

an example of a procedure for generating the training set. We 

applied six data normalization methods to the generated 

training set and acquired test set. Applied methods are sum-

marized in Table 2.

In this paper, an additional dataset for validation was not 

generated, but a cross-validation technique was used to vali-

date the training results. In the cross-validation, the subset was 

extracted from the training set and used for validation. The 

validation fraction was set to 0.2, which indicates that 20% of 

the training set was extracted for validation. For the SVM, a 

five-fold cross-validation was used, which indicates that cross-

validation was repeated five times with different subsets, and 

Fig. 2. Example of a procedure for generating a training set for a class of 60Co. PDF, probabilistic density function.

Table 2. Summary of the Data Normalization Methods

Notation Normalization method Mathematical formula

Method 1 Total sum normalization

Method 2 Median normalization

Method 3 Normalized integration

Method 4 Min-Max normalization

Method 5 Decimal normalization

Method 6 Z-score normalization

xi, the ith element of the original data X; xi,norm, ith element of the normalized 
data Xnorm; n, the number of elements in the original data set; d, the small-
est integer that makes max (Xnorm) <1.
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averaged result was output as the final validation result. For 

the ANN and CNN, the subset for validation was extracted, 

and cross-validation was conducted for every epoch.

3. Model Implementation
SVM was implemented in a Python environment with the 

LIBSVM library [38], and tunable parameters were found by 

the grid search method that was provided as a function of 

the library. ANN and CNN were implemented in the Python 

environment library using the TensorFlow library [39]. The 

tunable hyper-parameters for ANN were defined as follows: 

the number of layers, number of neurons for each layer, drop-

out rate, learning rate, and batch size. Tunable hyper-param-

eters were defined to be analogous to those of an ANN, but 

several parameters were added: the number of convolution 

layers and size of the convolutional kernel. The hyper-pa-

rameters of the ANN and CNN were found by the Bayesian 

optimization technique [40]. A cross-entropy function was 

used as a loss function, and the Adam optimizer was used 

for training ANN and CNN models. The rectified linear units 

(ReLU) function was used as an activation function of hidden 

layers, and the softmax function was used as an activation 

function of the output layer. The maximum epochs used to 

train a model were set as 1,000. Furthermore, the early stop-

ping option was applied to prevent overfitting issues. The 

monitoring value for early stopping was set as validation ac-

curacy, and the patience epoch number was set to 50.

Results and Discussion

1. Identification Results
The training set and test set were normalized by methods 

0 to 6. For here, method 0 denotes raw data, i.e., data without 

normalization, and the others are listed in Table 2. The im-

plemented SVM, ANN, and CNN were trained and tested us-

ing training sets and test sets normalized by each method. 

Hyper-parameter tunings were conducted for each normal-

ization method. Fig. 3 shows the averaged accuracy of the 

SVM, ANN, and CNN according to the data normalization 

methods. As shown in Fig. 3, SVM and ANN exhibit the high-

est identification accuracy with method 5, i.e., decimal nor-

malization, and the CNN has the highest accuracy without 

data normalization.

2. Gain Shift Sensitivity
Spectra measured by plastic scintillation detectors can 

cause gain shift effects owing to the calibration drift or tem-

perature effect. To obtain robust machine learning models 

for radioisotope identification against gain shift effects, we 

added 450 channel extraction processes during the training 

set generation procedure as described in Materials and 

Methods section (2.3 Dataset generation). To confirm that 

our models have robustness against the gain shift effect 

through the channel extraction process, we applied the gain 

shift effect by adjusting the gain value of the linear amplifier 

in the positive and negative directions. The magnitude of the 

gain shift were ± 10% of the energy bins for the positive and 

negative directions. 

We conducted radioisotope identification for the test set 

with gain shift effects using the pre-trained SVM, ANN, and 

CNN. Fig. 4 shows the averaged prediction accuracy of the 

SVM, ANN, and CNN according to the data normalization 

methods for the test set with positive and negative gain shifts. 

As shown in Fig. 4, the best data normalization methods for 

the SVM, ANN, and CNN were different depending on the 

gain shift effects. For a positive gain shift, the SVM had the 

highest accuracy with method 3, i.e., normalized integration, 

and the ANN and CNN had the highest accuracies with 

method 1, i.e., the total sum normalization. For the negative 

gain shift, the SVM had the highest accuracy with method 3, 

i.e., normalized integration, the ANN had the highest accu-

racy with method 1, i.e., total sum normalization, and the 

CNN had the highest accuracy without data normalization.

Fig. 3. Averaged prediction accuracy of support vector machine 
(SVM), artificial neural network (ANN), and convolutional neural net-
work (CNN) according to data normalization methods.
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3.  Gain Shift Sensitivity Combined Results on Test Sets 
 with and without Gain Shift Effect

To select the best normalization methods for the SVM, 

ANN, and CNN, we confirmed the averaged prediction ac-

curacy for the test sets with and without the gain shift. Fig. 5 

shows the prediction accuracy for combined test sets with 

and without gain shift effects in the SVM, ANN, and CNN ac-

cording to the data normalization methods. Table 3 shows 

the determined hyper-parameters for the SVM, ANN, and 

CNN for the data normalization methods.

4. Discussions
Among the three machine learning-based radioisotope 

identifiers, prediction accuracy for combined test sets with 

and without gain shift increased in the order SVM> ANN>  

CNN. The training time increased in the order SVM> ANN>  

CNN. It took 2.867 seconds to train an SVM model with the 

best hyper-parameters described in Table 3 using a desktop 

that has CPU of 4 kHz Intel Core i7 and RAM of 32 GB. For 

training of an ANN and CNN, a graphics processing unit 

workstation was used, which has four units of the GeForce 

GTX1080Ti with 11 GB memory. Despite this, however, it 

took 149.089 seconds and 2,270.678 seconds, respectively to 

train an ANN and a CNN with the best hyper-parameters de-

scribed in Table 3. These training times are the time taken to 

train a model for each method. 

The identification performances of the implemented ra-

dioisotope identifiers can be changed according to the quali-

ty of spectral data. If the identifiers are trained and tested 

with data that has a higher number of counts than ours, the 

identification performance could be enhanced. Furthermore, 

the ANN and CNN may have better identification performanc-

es, if they have deeper layers or advanced structure, i.e., deep-

er convolution layers [41, 42], residual shortcut connection 

[43], dense connection [44], etc. The depth of the hidden lay-

ers and structure of neural networks were associated with the 

number of training sets and the time to train a model. There-

fore, a model with deeper hidden layers or advanced structure 

needs not only a larger number of training samples but also 

requires a longer training time than our neural network mod-

Fig. 4. Averaged prediction accuracy of the support vector machine (SVM), artificial neural network (ANN), and convolutional neural network 
(CNN) according to data normalization methods for the test set with gain shifts in (A) positive and (B) negative directions.
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artificial neural network (ANN), and convolutional neural network 
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els. Although advanced neural networks that have deeper 

layers or complicated structures were not considered in this 

study because there’s possibility that their accuracies can be 

improved than those of our SVM, ANN, and CNN, further 

studies must be conducted to confirm their performance. 

Even though our study was conducted with simulations 

and experiments, data used in this study may be out of prac-

tical measurements because of following limitations that we 

did not address. Firstly, our study was conducted with mea-

surement data from a small plastic scintillation detector. In 

practice, most of radioisotope identification methods for 

plastic scintillation detectors are targeted to be applied on 

radiation portal monitors, whose volumes are over than sev-

eral tens of liters. Furthermore, we fixed measuring period 

and position of gamma-ray sources, which may far away 

from realistic situations. Therefore, measurement from plas-

tic scintillation detectors in field may have different charac-

teristics from ours such as lack of counts or change in shape 

of Compton continuum because of geometric randomness 

of specimens and gamma-ray attenuation in specimens. 

Secondly, radiation sources used was limited. Although 

sources used in this study were typical gamma ray sources, 

major challenging issue of radioisotope identification in field 

applications may be distinguishing naturally occurring ra-

dioactive materials to reduce nuisance alarms of radiation 

portal monitors or special nuclear materials to prevent 

smugglings that may cause nuclear threats. Thirdly, the mag-

nitude of gain shift could be higher than 10% which we set to. 

Therefore, further studies on these limitations are necessary 

to develop machine leaning based radioisotope identifiers 

for field applications.

Conclusion

We implemented machine learning-based radioisotope 

identifiers for plastic scintillation detector, and the impact of 

data normalization for each identifier was compared. SVM-, 

ANN-, and CNN-based identifiers were trained by a training 

set that was generated using measured and simulated PDFs, 

and evaluated by real measurement data. To compare the 

impact of data normalization on machine learning-based 

identifiers, we applied six data normalization methods, as 

well as a no normalization case, to the training set and test 

sets for the identifiers. The applied normalization methods 

are the total sum normalization, median normalization, nor-

malized integration, min-max normalization, decimal nor-

Table 3. Determined Hyper-parameters of the SVM, ANN, and CNN for Different Data Normalization Methods

Name of the parameter Search range
Determined value

M0 M1 M2 M3 M4 M5 M6

SVM Cost parameter 2-15–215 25 29 29 23 29 29 27

Shape parameter 2-15–215 2-15 23 2-15 23 2-9 21 2-7

Prediction accuracy - 60.250 67.458 36.500 84.542 71.333 42.917 57.458
ANN # of hidden layers 1–3 3 2 2 1 2 3 3

# of neurons in 1st layer 10–2,000 2,000 1,374 608 187 220 213 679
# of neurons in 2nd layer 10–2,000 2,000 416 1,567 0 687 834 1,377
# of neurons in 3rd layer 10–2,000 2,000 0 0 0 0 1,392 2,000
Learning rate 0.00001–0.01 0.00001 0.00539 0.00018 0.00029 0.00404 0.00589 0.00001
Dropout rate    0–0.6 0.0 0.2381 0.2191 0.0 0.04952 0.08804 0.6
Batch size 20–27 21 26 25 25 25 23 26

Prediction accuracy - 61.083 81.750 63.625 69.167 59.667 45.042 23.583
CNN # of convolution neurons (filter) 16–8,000 2,400 8,000 8,000 8,000 8,000 8,000 8,000

Convolution kernel size   2–50 50 50 50 50 50 50 50
# of hidden layers 1–3 3 1 1 3 1 1 1
# of neurons in 1st layer 10–2,000 1,571 2,000 1,293 2,000 1,473 2,000 946
# of neurons in 2nd layer   1–2,000 2,000 0 0 2,000 0 0 0
# of neurons in 3rd layer 10–2,000 1,346 0 0 1,131 0 0 0
Learning rate 0.00001–0.01 0.00001 0.00001 0.00001 0.00001 0.00001 0.00503 0.00001
Dropout rate 0–0.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0
Batch size 20–27 21 20 20 20 20 26 20

Prediction accuracy - 75.250 61.500 56.417 31.250 59.750 37.791 67.000

The best conditions are highlighted in bold.
SVM, support vector machine; ANN, artificial neural network; CNN, convolutional neural network.
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malization, and Z-score normalization. To build radioiso-

tope identification models that have robustness against gain 

shift effects, we added a 450-channel extraction process in 

the training set generation procedure. For combined test sets 

with and without gain shift effects, the SVM had the best pre-

diction performance with normalized integration, the ANN 

had the best performance with total sum normalization and 

the CNN had the best performance without data normaliza-

tion. The prediction accuracy for the combined test sets was 

highest with the SVM. The CNN exhibited a minimum varia-

tion in prediction accuracy for each class, even though it had 

the lowest prediction accuracy for the combined test sets 

among three identifiers. The SVM exhibited the highest pre-

diction accuracy for the combined test sets, and its training 

time was the shortest among three identifiers.
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