• 제목/요약/키워드: Back-to-back wall

Search Result 338, Processing Time 0.029 seconds

Experimental evaluation of back-to-back anchored walls by double-plates anchors

  • Amir, Najafizadeh;AmirAli, Zad
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.599-614
    • /
    • 2022
  • One of the methods of stabilizing retaining walls, embankments, and deep excavations is the implementation of plate anchors (like the Geolock wall anchor systems). Back-to-back Mechanically Stabilized Earth (BBMSE) walls are common stabilized earth structures that can be used for bridge ramps. But so far, the analysis of the interactive behavior of two back-to-back anchored walls (BBAW) by double-plates anchors (constructed closely from each other and subjected to the limited-breadth vertical loading) including interference of their failure and sliding surfaces has not been the subject of comprehensive studies. Indeed, in this compound system, the interaction of sliding wedges of these two back-to-back walls considering the shear failure wedge of the foundation, significantly impresses on the foundation bearing capacity, adjacent walls displacements and deformations, and their stability. In this study, the effect of horizontal distance between two walls (W), breadth of loading plate (B), and position of vertical loading was investigated experimentally. In addition, the comparison of using single and equivalent double-plate anchors was evaluated. The loading plate bearing capacity and displacements, and deformations of BBAW were measured and the results are presented. To evaluate the shape, form, and how the critical failure surfaces of the soil behind the walls and beneath the foundation intersect with one another, the Particle Image Velocimetry (PIV) technique was applied. The experimental tests results showed that in this composite system (two adjacent-loaded BBAW) the effective distance of walls is about W = 2.5*H (H: height of walls) and the foundation effective breadth is about B = H, concerning foundation bearing capacity, walls horizontal displacements and their deformations. For more amounts of W and B, the foundation and walls can be designed and analyzed individually. Besides, in this compound system, the foundation bearing capacity is an exponential function of the System Geometry Variable (SGV) whereas walls displacements are a quadratic function of it. Finally, as an important achievement, doubling the plates of anchors can facilitate using concrete walls, which have limitations in tolerating curvature.

Characteristic of Human Static load Acting on the Lightweight Wall (경량벽체에 작용하는 인간에 의한 정적하중의 특성)

  • Song, Jung-Hyeon;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.192-193
    • /
    • 2013
  • The purpose of this research is to comprehend experimentally the nature of human static load to wall for making use of the result as basic data to evaluate resisting force of lightweight wall. Human motions exerting static load are classified to 4 types, and two-hands pushing and shoulder pushing are defined as the instantaneously forcing motions with hands or shoulder put on the load plate, respectively. Back leaning and one-hand leaning are defined as motions of taking a rest in their respective comfortable posture. Measurement of static horizontal load caused by each motion showed that the highest load ratio depends on hardness of load plane and was 1.17~1.25 times of weight in two-hands pushing, 0.95~0.99 times in shoulder pushing, 0.16~0.18 times in back leaning, and 0.12~0.15 times in one-hand leaning.

  • PDF

Comparison of Quadriceps Femoris Muscle Activations during Wall Slide Squats (벽 미끄러짐 쪼그려 앉기 방법에 따른 넙다리네갈래근의 근활성도 비교)

  • Kim, Byeong-Jo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.4
    • /
    • pp.541-550
    • /
    • 2012
  • PURPOSE: The purpose of this study was compare quadriceps femoris muscle activity while performing wall slide squats of four methods. METHODS: Forty subjects, with no history of patellofemoral pain, quadriceps injury, or other knee injury volunteered for this study. Muscle activation of the vastus medialis obliquus, rectus femoris, vastus lateralis muscles were recorded while subjects performed 10 consecutive wall slide squats. Subjects performed the wall slide squats during four different methods: (1) basic wall slide squat, (2) keep back upright against fitness ball, (3) standing of unstable surface, (4) squeezing ball between both knees. Statistical analysis were accomplished by utilizing the one-way ANOVA(Bonferroni's post-hoc test) by SPSS 20.0 program. Significance level was set at p<.05. RESULTS: Muscle activations induced wall slide squats of four methods compared and results showed that there was significant difference only in vastus medialis obliquus and rectus femoris but there was no significant difference in vastus lateralis. The vastus medialis obliquus was significantly different only keep back upright against fitness ball at post-hoc test. The rectus femoris was significantly different keep back upright against fitness ball and standing of unstable surface at post-hoc test. CONCLUSION: Based on these results, we conclude that quadriceps femoris muscle activations are differenced by performing wall slide squats of four different methods in healthy subjects. These data suggest that for quadriceps muscle strengthening, exercise professionals can perform the wall slide squats by altering several task variables. Further research is needed to determine the exact mechanism by which quadriceps function is altered.

A Study of the Couplant Effects on Contact Ultrasonic Testing

  • Kim, Young-H.;Song, Sung-Jin;Lee, Sung-Sik;Lee, Jeong-Ki;Hong, Soon-Shin;Eom, Heung-Seop
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.621-626
    • /
    • 2002
  • The amplitude of a back-wall echo depends on the reflection coefficient of the interface between a transducer and a test material when using contact pulse-echo ultrasonic testing. A couplant is used to transmit ultrasonic energy across the interface, but has an influence on the amplitude of the pulse-echo signal. To investigate the couplant effect on pulse-echo ultrasonic testing, back-wall echoes are measured by using various couplants made of water and glycerine in a carbon and austenitic stainless steel specimens. The amplitude of the first back-wall echo and the apparent attenuation coefficient increases with the acoustic impedance of the couplant. The couplant having a higher value of the transmission coefficient is more effective for flaw detection. The reflection coefficient should be known in order to measure the attenuation coefficient of the test material.

Stability of Railway Bridge Abutment with Earth Pressure and Internal Friction Angle of Backfill (내부마찰각과 토압 산정방법에 따른 철도교대의 안정성 비교 연구)

  • Choi, Chan Yong;Kim, Hun Ki;Yang, Sang Beom;Kim, Byung Il
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.765-776
    • /
    • 2016
  • In this study, a standard section of a railway bridge abutment wall was designed to satisfy the external stability condition in accordance with the design criteria; this design was used to compare and analyze the active earth pressure and to calculate various types of earth pressure acting on the virtual back (wall, plane) according to the frictional angle of the backfill materials. Also, the external stability, member force and construction cost were analyzed according to the frictional angle of the backfill materials using various theories of earth pressure such as Rankine, Coulomb, Trial Wedge, and Improved Trial Wedge. As for the results, it was found that lateral earth pressure at the virtual back plane was higher than at the virtual back wall, and that these values decreased with the increase of the frictional angle of the backfill materials. The increasing of the frictional angle of the backfill materials decreased the active earth pressure (according to Rankine, Coulomb, Trial Wedge, and Improved Trial Wedge results), and the member force as well as the construction cost were reduced.

An Analytical Model for Deriving the 3-D Potentials and the Front and Back Gate Threshold Voltages of a Mesa-Isolated Small Geometry Fully Depleted SOI MOSFET

  • Lee, Jae Bin;Suh, Chung Ha
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.473-481
    • /
    • 2012
  • For a mesa-isolated small geometry SOI MOSFET, the potentials in the silicon film, front, back, and side-wall oxide layers can be derived three-dimensionally. Using Taylor's series expansions of the trigonometric functions, the derived potentials are written in terms of the natural length that can be determined by using the derived formula. From the derived 3-D potentials, the minimum values of the front and the back surface potentials are derived and used to obtain the closed-form expressions for the front and back gate threshold voltages as functions of various device parameters and applied bias voltages. Obtained results can be found to explain the drain-induced threshold voltage roll-off and the narrow width effect of a fully depleted small geometry SOI MOSFET in a unified manner.

Time-Delay and Amplitude Modified BP Imaging Algorithm of Multiple Targets for UWB Through-the-Wall Radar Imaging

  • Zhang, Huamei;Li, Dongdong;Zhao, Jinlong;Wang, Haitao
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.677-688
    • /
    • 2017
  • In order to solve the undetected probability of multiple targets in ultra-wideband (UWB) through-the-wall radar imaging (TWRI), a time-delay and amplitude modified back projection (BP) algorithm is proposed. The refraction point is found by Fermat's principle in the presence of a wall, and the time-delay is correctly compensated. On this basis, transmission loss of the electromagnetic wave, the absorption loss of the refraction wave, and the diffusion loss of the spherical wave are analyzed in detail. Amplitude compensation is deduced and tested on a model with a single-layer wall. The simulating results by finite difference time domain (FDTD) show that it is effective in increasing the scattering intensity of the targets behind the wall. Compensation for the diffusion loss in the spherical wave also plays a main role. Additionally, the two-layer wall model is simulated. Then, the calculating time and the imaging quality are compared between a single-layer wall model and a two-layer wall model. The results illustrate the performance of the time-delay and amplitude-modified BP algorithm with multiple targets and multiple-layer walls of UWB TWRI.

A Study on the Injection Characters of The Back Side Grouting Method by a Model Test (모형실험을 통한 배면지수 그라우팅기법에 관한 연구)

  • Chun, Byung-Sik;Choi, Choon-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.175-182
    • /
    • 2002
  • The cement injection technology on the purpose of ground reinforcement and cut-off has been used in construction sites until now. However, recently it is applied to prevent leakage of underground structure. In this study, applicability of the back side waterproof grouting method was verified through performing field model tests and reviewing case histories. From the results of this study, injection shape of the back side waterproof grouting method was appeared to be root type, and waterproof effect by injection of cement grout material was excellent because grout material infiltrated into boundary between wall of structure and back side ground to be waterproof layer. Components influencing infiltration of injection material are type of soil and degree of compaction. For effective injection, injection pressure has to vary gradually from high pressure to low pessure and small quantity of injection material has to be injected for long times. Also, spacing of injection hole must be designed considering condition of back side ground, injection area, W/C ratio, the number of injection and injection pattern properly.

A study on the quantity of shear-wall by seismic retrofit of wall-type apartment (벽식 아파트 내진보강을 위한 신설벽체 벽량에 관한 연구)

  • Jung, Woo-Kyung;Hong, Geon-Ho;Song, Jin-Gyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.169-172
    • /
    • 2006
  • Wall construction apartment built before 1988 years need internal examination reinforcement according to existing laws ans regulations at remodeling because do not earthquake resistant design. Established newly wall to interest paid back at the same time a the principal direction for wall construction apartment internal examination reinforcement, and satisfied internal examination standard because uses width displacement between floor. This study analyzes displacement value such as latitude and presented position of efficient reinforcement wall and wall quantity at earthquake resistant design of wall construction apartment.

  • PDF

An Experimental Study on the Inclined Earth Retaining Structure in Clay (점토지반내의 IER 지주식 흙막이의 실험적 고찰)

  • Jeong, Dong-Uk;Im, Jong-Chul;Yoo, Jae-Won;Seo, Min-Su;Koo, Young-Mo;Kim, Sung-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.6
    • /
    • pp.63-75
    • /
    • 2013
  • Inclined Earth Retaining Structure Method (IER Method), was developed in order to improve the mechanical properties of the existing earth retaining method. IER consists of two supports, which are front and back supports. In the IER method, back support is very effective for the reduction of the earth pressure acting on the front support. In this study, the effects of back support and fixing conditions of lower ends of supports are analysed by laboratory model tests in clay. The test results show that back support reduces the Leteral displacement of IER effectively, and according to the results the effect of interval and fixing condition of back support was analysed.