• 제목/요약/키워드: Back electro-motive force

검색결과 21건 처리시간 0.025초

역기전력 추정기를 이용한 전류 모델 기반의 SPMSM 센서리스 벡터제어 (Current Model based SPMSM Sensorless Vector Control using Back Electro Motive Force Estimator)

  • 이정효;유재성;공태웅;이원철;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 추계학술대회 논문집
    • /
    • pp.7-10
    • /
    • 2007
  • The current model based sensorless method has many benefits that it can be robust control for large load torque. However, this method should determine a coefficient of back electro motive force(back-emf). This coefficient is varied by load torque and speed. Also, the coefficient determining equation is not exist, so it is determined only by experiment. On the other hands, using only back-emf estimatior method can not drive in low speed area and it has weakness in load variation. For these problems, this paper suggests the hybrid sensorless method that mixes the back-emf estimator regarding saliency and the current based sensorless model. This estimator offers not only non-necessary coefficient for current sensorless model, but also wide speed area operating in no specific transition method.

  • PDF

무급유식 공기압축기 구동을 위한 영구자석 동기 모터의 센서리스 속도제어 (Sensor-less Speed Control of PMSM for Driving Oil-free Air Compressor)

  • 김민호;양오;김윤현
    • 반도체디스플레이기술학회지
    • /
    • 제14권3호
    • /
    • pp.45-50
    • /
    • 2015
  • This paper suggests the sensor-less speed control of PMSM (Permanent Magnet Synchronous Motor) without the position sensor of oil-free air compressor. It estimated d and q axis back electro motive force using Back-EMF (Electro motive Force) observer to control sensor-less speed of PMSM. Also it used the method that tracks the information of rotor position and speed using PLL (Phase Locked Loop) based on estimated d and q axis Back-EMF. The sensor-less speed control of PMSM for oil air compressor application is carried out with the introduced rotor position and speed tracking method. In this paper, the experimental characterization of the sensor-less drive is provided to verify the accuracy of the estimated position and the performance of sensor-less control is analyzed by results obtained from the experiment. Moreover, the potential of PMSM sensor-less drive in industrial application such as compressor drive is also examined.

Characteristic Analysis and Experimental Verification of the Axially Asymmetric Structured Outer-Rotor Type Permanent Magnet Motor

  • Seo, Myung-Ki;Lee, Tae-Yong;Park, Kyungsoo;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.898-904
    • /
    • 2016
  • In this study, we have dealt with a design characteristic of outer-rotor type permanent magnet (PM) motor applied for Engine Cooling Fan (ECF). When we design a motor with structure like this type, it is required as a requisite to consider 3-Dimensional (3-D) effect by implementing a non-linear Finite Element Analysis (FEA) due to a yoke-ceiling, which is perpendicular to the axis of rotation. We have analyzed identical models under three different conditions. The analysis has been performed through a non-linear 2-Dimensional (2-D) and 3-D FEA. Finally, the results have been compared with Back Electro-Motive Force (BEMF) value of actual motor model. As a result, a yoke-ceiling function as an additional flux path and the operating point on B-H curve of rotor material is shifted to non-saturation region relatively. Accordingly, magnetic flux linkage can be increased and motor size can be decreased under same input condition to satisfy ECF specification, such as torque.

회전자 편심을 가지는 IPM, SPM 전동기 진동 특성 비교: (1) 영구 자석에 의한 전자기력 (Comparison of Vibration Characteristics in IPM and SPM BLDC Motors with Rotor Eccentricity : (1) Electro-magnetic Force Due to PM)

  • 황근배;김경태;황상문
    • 한국소음진동공학회논문집
    • /
    • 제11권9호
    • /
    • pp.454-461
    • /
    • 2001
  • Acoustic noise and vibration of a BLDC motor is a coupled phenomenon between mechanical characteristics and electromagnetic origins through the motor air-gap. When a relative misalignment of rotor in the air-gap center exists on the assemblage, it is considered to influence the motor system characteristics. In this paper, the back electro motive force(BEMF) is analyzed by Finite Element Method(FEM) and verified by experiments for the SPM and IPM type motors. For magnetic field analysis, a FEM is used to account for the magnetic saturation. Using these results, the FEM is made to determine the appropriate electromagnetic field analysis in BLDC motors with rotor eccentricity ratio. A radial magnetic imbalance force of BLDC motor with rotor eccentricity is analyzed. Results demonstrate that the imbalance force is increased according to the degree of misalignment. An IPM motor, mostly chosen to realize high-speed operation, shows a worse effect on magnetic unbalanced forces and dynamic responses compared with SPM motor due to magnetic saturation when the rotor eccentricity exists.

  • PDF

극수/슬롯수 조합에 따른 Radial Vibration Force 고려한 매입자석 동기모터 특성 연구 (Study on Machine Characteristics in Interior Permanent Magnet Synchronous Motor According to Pole/Slot Combinations with Radial Vibration Force Consideration)

  • 방량;이수진;이병화;홍정표
    • 전기학회논문지
    • /
    • 제60권5호
    • /
    • pp.949-954
    • /
    • 2011
  • This paper presents a comparative study on motor characteristics with specific consideration of radial vibration force in interior permanent magnet synchronous motors (IPMSM) according to pole/slot combinations. Three IPMSM models, 16-pole/15-slot design, 16-pole/18-slot design and 16-pole/24-slot design are built, in which 16-pole/15-slot and 16-pole/18-slot designs provide high winding factor and 16-pole/24-slot design is known as a general pole/slot combination. By coupling finite element analysis (FEA) with equivalent circuit method, motor characteristics, back electro-motive force (Back-EMF), inductances, cogging torque, etc. as well as machine output performances are analyzed and compared. The radial vibration force (RVF) distribution in air gap causing stator vibration and noise is interested. It is expected that this study help with appropriate choice of pole/slot combination in IPMSM design.

역기전력을 이용한 인공심장구동용 브러시리스 직류전동기의 제어에 관한 연구 (A study on the development of the brushless DC motor control system for an artificial heart using back-EMF)

  • 김진태;김종원;이상훈;김희찬;민병구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.706-710
    • /
    • 1988
  • Using back electro-motive force(EMF) signals of a brushless DC motor, the sensorless micro-processor controlled drive system was developed. In this new commutation method, the manual pulses are used for relatively short accelerating phase and then the exact commutational positions are detected based upon the back emf signals. The hardware and software implementations with the experiment to compare the performance of the developed system with the, conventional system using hall effect sensors are included. By reducing the number of the required sensors in the artificial heart control system, the total reliability will be incresed.

  • PDF

비선형 효과를 고려한 IPM형 전동기의 DQ축 인덕턴스 및 역기전력상수 파라미터 추출 (Parameter Extraction of DQ-Axis Inductance and Back-EMF Constant For IPM Type Motors Based on Nonlinear Finite Element Analysis)

  • 최홍순
    • 전기학회논문지
    • /
    • 제56권3호
    • /
    • pp.519-523
    • /
    • 2007
  • In this paper, we propose a precise parameter extraction of interior permanent magnet (IPM) motors based on finite element analysis. For the calculation of the two-axis inductances Ld and Lq, the slotting effect and cross magnetization due to torque angle are considered. It is examined that back electro-motive force (BEMF) constant is affected by the magnetic saturation in different ways dependent on motor types. Numerical analyses and some measurements are performed for a spoke type and a flux barrier type IPM motors

브러시리스 직류전동기 특성에 대한 영구자석 오버행 효과 (Permanent Magnet Overhang Effect on the Characteristics in Brushless DC Motor)

  • 전연도;약미진치;이주
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권4호
    • /
    • pp.229-236
    • /
    • 2004
  • In this paper, the effect of permanent magnet overhang structure on the characteristics in Brushless DC motor has analyzed quantitatively. We classified the overhang structure as symmetric and asymmetric. 3D equivalent magnetic circuit network (EMCN) method which uses the permeance as the distributive variable is used for the efficient analysis of magnetic field. The overhang effect which increases the linkage flux at the stator is verified by comparison between overhang and no overhang structure. In addition, it is known that no load back electro motive force (EMF) is also increased due to the overhang effect. In case of asymmetric overhang structure, the ratio effect of the upper to lower overhang length on the magnetic forces is analyzed. Form the analysis results, the variation of the asymmetric overhang ratio has a significant effect on the axial magnetic force except the radial and tangential magnetic forces. The validity of the analysis results is also clarified by comparison between calculated results and measured ones such as back EMF and cogging torque.

Design and Analysis of a Material Efficient Sinusoidal Consequent-Pole High-Speed Axial-Flux Machine

  • Kumar, Sunil;Kwon, Byung-il
    • 전기전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.759-766
    • /
    • 2018
  • This paper presents a high-speed axial-flux machine which utilizes the idea of sinusoidal shaped pole combined with a consequent iron-pole. The target of the proposed machine is the cost reduction of the relatively expensive Samarium-Cobalt (SmCo) permanent magnet (PM) material and the torque per PM volume improvement by using sinusoidal consequent-pole rotor. The effectiveness of the proposed machine is validated by comparing it with conventional consequent-pole and with conventional PM machines using 3-D finite element method (FEM) simulations. The comparison and analysis is done in terms of back electro-motive force (back-EMF) harmonic contents, torque per PM volume and torque ripple characteristics. The simulation results show that the proposed machine is suitable and cost-effective for high-speed and high torque per PM volume applications. Furthermore, due to the consequent pole, the magnetic flux saturation and the overload current torque-capability are also presented and discussed in the paper.

표면부착형 / 매입형 영구자석 동기 전동기의 비교 분석 (Comparative Analysis of Surface-mounted and Interior Permanent Magnet Synchronous Motor)

  • 박형일;김관호;신경훈;장석명;최장영
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.987-994
    • /
    • 2016
  • In this paper, we present a comparative analysis of surface-mounted permanent magnet synchronous motors (SPMSM) and interior permanent magnet synchronous motors (IPMSM). First, we use 2D finite element analysis (FEA) to analyze models satisfying the same rated conditions according to the torque-speed curve characteristics, which are determined from the operating conditions. Next, we manufacture an SPMSM and IPMSM having good performances from an electromagnetic perspective based on analysis results, namely the cogging torque, torque ripple, and efficiency. We analyze both of the manufactured machines when they are connected back-to-back and when they are used as a motor and a generator, respectively. The motor is driven by a commercial inverter and the generator is connected to a three-phase resistance load bank. Finally, based on experimental results, which include the total harmonic distortion (THD) of the back electro-motive force (EMF), cogging torque, efficiency, and mass, we determine the motor that is most suitable under requirements.