• Title/Summary/Keyword: Back Propagation

Search Result 1,469, Processing Time 0.027 seconds

Statistical Process Control System for Continuous Flow Processes Using the Kalman Filter and Neural Network′s Modeling (칼만 필터와 뉴럴 네트워크 모델링을 이용한 연속생산공정의 통계적 공정관리 시스템)

  • 권상혁;김광섭;왕지남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.50-60
    • /
    • 1998
  • This paper is concerned with the design of two residual control charts for real-time monitoring of the continuous flow processes. Two different control charts are designed under the situation that observations are correlated each other. Kalman-Filter based model estimation is employed when the process model is known. A black-box approach, based on Back-Propagation Neural Network, is also applied for the design of control chart when there is no prior information of process model. Performance of the designed control charts and traditional control charts is evaluated. Average run length(ARL) is adopted as a criterion for comparison. Experimental results show that the designed control chart using the Neural Network's modeling has shorter ARL than that of the other control charts when process mean is shifted. This means that the designed control chart detects the out-of-control state of the process faster than the others. The designed control chart using the Kalman-Filter based model estimation also has better performance than traditional control chart when process is out-of-control state.

  • PDF

Web-based Design Support System for Automotive Steel Pulley (웹 기반 자동차용 스틸 풀리 설계 지원 시스템)

  • Kim, Hyung-Jung;Lee, Kyung-Tae;Chun, Doo-Man;Ahn, Sung-Hoon;Jang, Jae-Duk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.39-47
    • /
    • 2008
  • In this research, a web-based design support system is constructed for the design process of automotive steel pulley to gather engineering knowledge from pulley design data. In the design search module, a clustering tool for design data is proposed using K-means clustering algorithm. To obtain correlational patterns between design and FEA (Finite Element Analysis) data, a Multi-layer Back Propagation Network (MBPN) is applied. With the analyzed patterns from a number of simulation data, an estimation of minimum von mises can be provided for given design parameters of pulleys. The case study revealed fast estimation of minimum stress in the pulley within 12% error.

Off-line Selection of Learning Rate for Back-Propagation Neural Ntwork using Evolutionary Adaptation (진화 적응성을 이용한 신경망의 학습률 선택)

  • 김흥범;정성훈;김탁곤;박규호
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.52-56
    • /
    • 1996
  • In trainir~ga back-propagation neural network, the learning speed of the network is greatly affected by its learning rate. Most of off-line fashioned learning-rate selection methods, however, are empirical except for some deterministic methods. It is very tedious and difficult to find a good learning rate using the empirical methods. The deterministic methods cannot guarantee the quality of the quality of the learning rate. This paper proposes a new learning-rate selection method. Our off-line fashioned method selects a good learning rate through stochastically searching process using evolutionary programming. The simulation results show that the learning speed achieved by our method is superior to that of deterministic and empirical methods.

  • PDF

A Prediction of the Plane Failure Stability Using Artificial Neural Networks (인공신경망을 이용한 평면파괴 안정성 예측)

  • Kim, Bang-Sik;Lee, Sung-Gi;Seo, Jae-Young;Kim, Kwang-Myung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.513-520
    • /
    • 2002
  • The stability analysis of rock slope can be predicted using a suitable field data but it cannot be predicted unless suitable field data was taken. In this study, artificial neural networks theory is applied to predict plane failure that has a few data. It is well known that human brain has the advantage of handling disperse and parallel distributed data efficiently. On the basis of this fact, artificial neural networks theory was developed and has been applied to various fields of science successfully In this study, error back-propagation algorithm that is one of the teaching techniques of artificial neural networks is applied to predict plane failure. In order to verify the applicability of this model, a total of 30 field data results are used. These data are used for training the artificial neural network model and compared between the predicted and the measured. The simulation results show the potentiality of utilizing the neural networks for effective safety factor prediction of plane failure. In conclusion, the well-trained artificial neural network model could be applied to predict the plane failure stability of rock slope.

  • PDF

Sensorless Speed Control of Induction Motor by Neural Network (신경회로망을 이용한 유도전동기의 센서리스 속도제어)

  • 김종수;김덕기;오세진;이성근;유희한;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.695-704
    • /
    • 2002
  • Generally, induction motor controller requires rotor speed sensor for commutation and current control, but it increases cost and size of the motor. So in these days, various researches including speed sensorless vector control have been reported and some of them have been put to practical use. In this paper a new speed estimation method using neural networks is proposed. The optimal neural network structure was tracked down by trial and error, and it was found that the 8-16-1 neural network has given correct results for the instantaneous rotor speed. Supervised learning methods, through which the neural network is trained to learn the input/output pattern presented, are typically used. The back-propagation technique is used to adjust the neural network weights during training. The rotor speed is calculated by weights and eight inputs to the neural network. Also, the proposed method has advantages such as the independency on machine parameters, the insensitivity to the load condition, and the stability in the low speed operation.

Intelligent AQS System with Artificial Neural Network Algorithm and ATmega128 Chip in Automobile (신경회로망 알고리즘과 ATmega128칩을 활용한 자동차용 지능형 AQS 시스템)

  • Chung Wan-Young;Lee Seung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.539-546
    • /
    • 2006
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. The sensor module which includes two independent sensing elements for responding to diesel and gasoline exhaust gases, and temperature sensor and humidity sensor was designed for intelligent AQS in automobile. With this sensor module, AVR microcontroller was designed with back propagation neural network to a powerful gas/vapor pattern recognition when the motor vehicles pass a pollution area. Momentum back propagation algorithm was used in this study instead of normal backpropagation to reduce the teaming time of neural network. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation in this study. One chip microcontroller, ATmega 128L(ATmega Ltd., USA) was used for the control and display. And our developed system can intelligently reduce the malfunction of AQS from the dampness of air or dense fog with the backpropagation neural network and the input sensor module with four sensing elements such as reducing gas sensing element, oxidizing gas sensing element, temperature sensing element and humidity sensing element.

Searching a global optimum by stochastic perturbation in error back-propagation algorithm (오류 역전파 학습에서 확률적 가중치 교란에 의한 전역적 최적해의 탐색)

  • 김삼근;민창우;김명원
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.3
    • /
    • pp.79-89
    • /
    • 1998
  • The Error Back-Propagation(EBP) algorithm is widely applied to train a multi-layer perceptron, which is a neural network model frequently used to solve complex problems such as pattern recognition, adaptive control, and global optimization. However, the EBP is basically a gradient descent method, which may get stuck in a local minimum, leading to failure in finding the globally optimal solution. Moreover, a multi-layer perceptron suffers from locking a systematic determination of the network structure appropriate for a given problem. It is usually the case to determine the number of hidden nodes by trial and error. In this paper, we propose a new algorithm to efficiently train a multi-layer perceptron. OUr algorithm uses stochastic perturbation in the weight space to effectively escape from local minima in multi-layer perceptron learning. Stochastic perturbation probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the EGP learning gets stuck to it. Addition of new hidden nodes also can be viewed asa special case of stochastic perturbation. Using stochastic perturbation we can solve the local minima problem and the network structure design in a unified way. The results of our experiments with several benchmark test problems including theparity problem, the two-spirals problem, andthe credit-screening data show that our algorithm is very efficient.

  • PDF

Learning method of a Neural Network using Genetic Algorithm for 3 Bit Parity Discrimination (패리티 판별을 위한 유전자 알고리즘을 사용한 신경회로망의 학습법)

  • Choi, Jae-Seung;Kim, Chung-Hwa
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.2 s.314
    • /
    • pp.11-18
    • /
    • 2007
  • Back propagation algorithm based on a gradient-decent method has been widely used to the training of a neural network. However, this algorithm have some problems such as dropping the minimum value in a local area according to an initial value and setting the number of units in a hidden layer when training the neural network. Accordingly, to solve the above-mentioned problems, this paper proposes a genetic algorithm using the training method of the neural network. Thus, the improved genetic algorithm using a new crossover and mutation method is proposed to discriminate 3 bit parity. Experiments confirm that the proposed system is effective for training speed after demonstrating for generation gap, the number of units in the hidden layer, and the number of individuals.

Context-aware Recommendation System for Water Resources Distribution in Smart Water Grids (스마트 워터 그리드(Smart Water Grid) 수자원 분배를 위한 컨텍스트 인지 추천시스템)

  • Yang, Qinghai;Kwak, Kyung Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.2
    • /
    • pp.80-89
    • /
    • 2014
  • In this paper, we conceive a context-aware recommendations system for water distribution in future smart water grids, with taking the end users' profiles, water types, network conditions into account. A spectral clustering approach is developed to cluster end users into different communities, based on the end users' common interests in water resources. A back-propagation (BP) neural network is designed to obtain the rating list of the end users' preferences on water resources and the water resource with the highest prediction rating is recommended to the end users. Simulation results demonstrate that the proposed scheme achieves the improved accuracy of recommendation within 2.5% errors notably together with a better user experience in contrast to traditional recommendations approaches.

A Design Method for Error Backpropagation neural networks using Voronoi Diagram (보로노이 공간분류를 이용한 오류 역전파 신경망의 설계방법)

  • 김홍기
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.490-495
    • /
    • 1999
  • In this paper. a learning method VoD-EBP for neural networks is proposed, which learn patterns by error back propagation. Based on Voronoi diagram, the method initializes the weights of the neural networks systematically, wh~ch results in faster learning speed and alleviated local optimum problem. The method also shows better the reliability of the design of neural network because proper number of hidden nodes are determined from the analysis of Voronoi diagram. For testing the performance, this paper shows the results of solving the XOR problem and the parity problem. The results were showed faster learning speed than ordinary error back propagation algorithm. In solving the problem, local optimum problems have not been observed.

  • PDF