• Title/Summary/Keyword: Bacillus vallismortis

Search Result 18, Processing Time 0.035 seconds

Bacillus vallismortis EXTN-1-Mediated Growth Promotion and Disease Suppression in Rice

  • Park Kyung-Seok;Paul Diby;Yeh Wan-Hae
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.278-282
    • /
    • 2006
  • Bacillus vallismortis EXTN-1, a biocontrol agent in cucumber, tomato and potato was tested in rice pathosystem against rice fungal pathogens viz. Magnaporthe grisea, Rhizoctonia solani and Cochliobolus miyabeanus. Apart from increasing the yield in the bacterized plants (11.6-12.6% over control), the study showed that EXTN1 is effective in bringing about disease suppression against all the tested fungal pathogens. EXTN-l treatment resulted in 52.11% reduction in rice blast, 83.02% reduction in sheath blight and 11.54% decrease in brown spot symptoms. As the strain is proven as an inducer for systemic resistance based on PR gene expression in Arabidopsis and tobacco models, it is supposed that a similar mechanism works in rice, bringing about disease suppression. The strain could be used as a potent biocontrol and growth-promoting agent in rice cropping system.

Characterization and Purification of Subtilosin A Produced by Bacillus vallismortis MCBL 1012 Isolated from Seasoned Dried Radish

  • Se-Yeon Lee;Dae-Ook Kang
    • Journal of Life Science
    • /
    • v.34 no.8
    • /
    • pp.576-587
    • /
    • 2024
  • In this study, diverse bacterial strains were isolated from fermented foods to screen those with antibacterial activity. Among them, one strain, identified as Bacillus vallismortis MCBL 1012 through 16S rRNA gene sequence analysis, was selected for its bacteriocin production. The culture supernatant of B. vallismortis MCBL 1012 showed antibacterial activity, mainly against Gram-positive bacteria. Scanning electron microscopy (SEM) revealed that bacteriocin treatment led to cellular content leakages in Listeria monocytogenes KCCM 40307, Enterococcus faecium KCCM 12118, and Streptococcus mutans KCTC 3065. PCR analysis confirmed B. vallismortis MCBL 1012 harbored subtilosin A gene (sbo A). Antibacterial activity was decreased by proteolytic enzymes like proteinase K, subtilisin A, and α-chymotrypsin. The bacteriocin demonstrated stability at 40℃ and 60℃ for 120 min, and up to 80℃ for 60 min, with rapid activity loss at 100℃. It retained full antibacterial activity within a pH range of 4.0 to 8.0 and was not affected by up to 100% organic solvents like ethanol, methanol, acetonitrile, and tetrahydrofuran. Nevertheless, activity decreased with more than 40% isopropanol and 80% acetone. Most tested inorganic salts and detergents had no effect on antibacterial activity except, CuSO4 and NiSO4 at specified concentrations. The bacteriocin exerted its antibacterial effect through bactericidal action against L. monocytogenes KCCM 40307. The bacteriocin was purified by ammonium sulfate precipitation, DEAE anion exchange chromatography, and RP-HPLC. The purification resulted in a final yield of 0.03% and a 283.7-fold increase in specific activity. MALDI-TOF MS analysis determined the exact molecular weight of purified bacteriocin to be 3,326.1 Da.

Bacillus vallismortis Strain EXTN-1 Mediated Systemic Resistance against Potato virus Y and X in the Field

  • Park, Kyung-Seok;Paul, Diby;Ryu, Kyung-Ryl;Kim, Eun-Yung;Kim, Yong-Ki
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.360-363
    • /
    • 2006
  • Efficacy of plant growth promoting rhizobacteria(PGPR) Bacillus vallismortis strain EXTN-1 has been proved in eliciting induced systemic resistance(ISR) in several crops. The present paper described the beneficial effects of EXTN-1 in potato as increase in yield and chlorophyll content, and plant protection against Potato Virus Y and X(PVY & PVX). EXTN-1 induced systemic resistance to the plants resulting in significant disease suppression in the field. Also the plants under treatment with EXTN-1 had higher chlorophyll content. The bacterized plants had significantly higher yields over the untreated control plants. The strain induced activation of defense genes, PR-1a and PDF 1.2 in transgenic tobacco model, which indicated the possible role of both SA, and JA pathways in EXTN-1 mediated plant protection against crop diseases.

Plant Growth Promotion and Induced Resistance by the Formulated Bacillus vallismortis BS07M in Pepper (Bacillus vallismortis BS07M 제형의 고추 생장촉진과 병저항성 유도)

  • Lee, Yong Ho;Song, Jaekyeong;Weon, Hang-Yeon;Park, Kyungseok;Sang, Mee Kyung
    • Research in Plant Disease
    • /
    • v.22 no.4
    • /
    • pp.284-288
    • /
    • 2016
  • A plant growth promoting rhizobacterium, Bacillus vallismortis BS07M, was formulated as a clay pellet (CP) to evaluate its pepper growth promotion and induced resistance against various diseases under field and storage conditions. Peppers were grown in 50-hole tray containing potting mixture with CP in seedling raising stage, and then it was transplanted into a field. After transplanting, pepper plants treated with CP in seedling raising stage increased shoot growth and reduced disease severity caused by Phytophthora capsici in detached pepper leaves compared to untreated control. Moreover, treatment with CP in seedling raising stage increased fruit weight per plant; after harvesting, pepper fruits shown reduced diameter of lesions by Colletotrichum acutatum, and occurrance of soft rot in storage condition. These results indicated that CP could affect plant growth and induced resistance in pepper plants under field condition, and maintenance of fruit during storage.

Cyclic Dipeptides from Bacillus vallismortis BS07 Require Key Components of Plant Immunity to Induce Disease Resistance in Arabidopsis against Pseudomonas Infection

  • Noh, Seong Woo;Seo, Rira;Park, Jung-Kwon;Manir, Md. Maniruzzaman;Park, Kyungseok;Sang, Mee Kyung;Moon, Surk-Sik;Jung, Ho Won
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.402-409
    • /
    • 2017
  • Cyclic dipeptides (CDPs) are one of the simplest compounds produced by living organisms. Plant-growth promoting rhizobacteria (PGPRs) also produce CDPs that can induce disease resistance. Bacillus vallismortis strain BS07 producing various CDPs has been evaluated as a potential biocontrol agent against multiple plant pathogens in chili pepper. However, plant signal pathway triggered by CDPs has not been fully elucidated yet. Here we introduce four CDPs, cyclo(Gly-L-Pro) previously identified from Aspergillus sp., and cyclo(L-Ala-L-Ile), cyclo(L-Ala-L-Leu), and cyclo(L-Leu-L-Pro) identified from B. vallismortis BS07, which induce disease resistance in Arabidopsis against Pseudomonas syringae infection. The CDPs do not directly inhibit fungal and oomycete growth in vitro. These CDPs require PHYTOALEXIN DEFICIENT4, SALICYLIC ACID INDUCTION DEFICIENT2, and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 important for salicylic acid-dependent defense to induce resistance. On the other hand, regulators involved in jasmonate-dependent event, such as ETHYLENE RECEPTOR1, JASMONATE RESPONSE1, and JASMONATE INSENSITIVE1, are necessary to the CDP-induced resistance. Furthermore, treatment of these CDPs primes Arabidopsis plants to rapidly express PATHOGENESIS-RELATED PROTEIN4 at early infection phase. Taken together, we propose that these CDPs from PGPR strains accelerate activation of jasmonate-related signaling pathway during infection.

Antifungal Activity of Bacillus vallismortis 1A against Phytopathogen (식물병원균에 대한 Bacillus vallismortis 1A 균주의 항진균 활성)

  • Lee, Mi-Hye;Kim, Soo-Jin;Lee, Chang-Muk;Jang, Jae-Seon;Chang, Hai-Joong;Park, Min-Seon;Koo, Bon-Sung;Yoon, Sang-Hong;Yeo, Yun-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.362-368
    • /
    • 2008
  • In order to isolate novel oligotrophic bacteria exhibiting antifungal activities, soils were collected from pepper-cultivated fields of Yeongyang, Jecheon, Nonsan, Eumsong and Goesan area in Korea. From soils in pepper cultivated area, a total of 9,354 strains were isolated as oligotrophic bacteria by the R2A dilution method. Among 9,354 oligotrohic bacteria candidates, 1A strain was selected by screening against Phytophthora capsici causing phytophthora blight of hot pepper in the greenhouse and field. The strain was identified as Bacillus vallismortis based on its 16S rDNA sequence and key characteristics as compared with those of authentic cultures of B. vallismortis(KACC 12149) and B. mojavensis(KACC 12096). The strain showed broad spectrum of antibiotic activity in vitro test, as revealed in its strong inhibitory activity to the genera Phytophthora, Collectotrichum, Botrytis and Fusarium, but not to Rhizoctonia and Magnaporthe. In pot experiments, infection rate of hot pepper in the non-treated pots was about 89%, while it was only 29% in the pots treated with 1A strain. The result indicated B. vallismortis 1A is a potential biocontrol agent for phytophthora blight of hot pepper

Induced Systemic Resistance by Bacillus vallismortis EXTN-1 Suppressed Bacterial Wilt in Tomato Caused by Ralstonia solanacearum

  • Park, Kyung-Seok;Paul, Diby;Kim, Yong-Ki;Nam, Ki-Woong;Lee, Young-Kee;Choi, Hyo-Won;Lee, Sang-Yeob
    • The Plant Pathology Journal
    • /
    • v.23 no.1
    • /
    • pp.22-25
    • /
    • 2007
  • Biocontrol activity of five strains of selected rhizo-bacteria were tested in tomato against bacterial wilt caused by Ralstonia solanacearum. After root bacterization the plants were grown in a perlite-hydroponic system. Upon challenge inoculation with the pathogen, all of the rhizobacterial strains efficiently suppressed the bacterial wilt in tomato in various rates, at maximum by the strain, Bacillus vallismortis strain EXTN-1. While the percent of infected plants in the non-bacterized control plants were 95%, it was only 65% in plants pre-treated with EXTN-1. It was also demonstrated that the movement of R. solanacearum within the stem was significantly hampered when the plants were root bacterized. As EXTN-1 has no antagonistic properties against R. solanacearum, the bacterial wilt was probably suppressed by a mechanism other than antibiosis. Previously, the strain had been proven to produce an efficient elicitor for inducing systemic resistance in many crops. As the present study confirmed that EXTN-1 has the ability for reducing the pathogen spread in tomato, the strain could be effectively used as a potential biocontrol agent against bacterial wilt.

Growth Promotion of Tobacco Plant by 3-hydroxy-2-Butanone from Bacillus vallismortis EXTN-1

  • Ann, Mi Na;Cho, Yung Eun;Ryu, Ho Jin;Kim, Heung Tae;Park, Kyungseok
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.388-393
    • /
    • 2013
  • It has been well documented that Bacillus vallismortis strain EXTN-1, a beneficial rhizosphere bacterium, could enhance plant growth and induce systemic resistance to diverse pathogens in plants. However, the molecular mechanisms for how the EXTN-1 promote plant growth and induce resistances to diverse pathogens. Here, we show that 3-Hydroxy-2-butanone, a volatile organic compound (VOCs) emitted from the EXTN1, is a key factor for the bacteria-mediated beneficial effects on plant growth and defense systems. We found that the presence of volatile signals of EXTN-1 resulted in growth promotion of tobacco seedlings. The identification and analysis of EXTN-1-secreted volatile signals by solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) indicated that a 3-hydroxy-2-butanone could provide not only the plant growth promotion, but also higher resistance against Pectobacterium carotovorum SCC1. These results suggest that a volatile compound released from EXTN-1 enhances the plant growth promotion and immunity of plants.

Antibacterial Effect of Bacteria Isolated from the Korean Traditional Foods against Pathogenic Bacteria (한국전통식품으로부터 분리 된 세균의 항균활성 효과)

  • Moon, Kyung-Mi;Heo, Moon-Soo
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1319-1323
    • /
    • 2015
  • Aquaculture continues to be an ever-growing sector. However, high-density farming increases disease outbreaks due to deteriorating water quality and internal stress. To prevent disease, the most common method chemotherapy is using antibiotic administration. In this study, probiotic bacteria were isolated from Korean traditional foods, such a Gochu pickle and cutlassfish salted seafood. Various bacteria were isolated, and their 16S rDNA sequences were analyzed. The antimicrobial activities of four isolates from Gochu pickle and seven isolates from cutlassfish salted seafood were assayed, in addition to the antibacterial activity of culture pellet and supernatant. The antibacterial activity of the pellet was higher than that of the supernatant. Isolate JKM-2 showed the highest antibacterial activity against Streptococcus iniae (43 mm), S. parauberis (40 mm), S. mutans (35 mm), and Vibrio vuinificus (26.5 mm). The sequences of the isolated strains were compared with those of Bacillus subtilis (97.71%), B. tequilensis (97.71%), Brevibacterium halotolerans (97.71%), B. subtilis (97.63%), B. subtilis (97.63%), B. mojavensis (97.54%), B. vallismortis (97.46%), B. nanillea (97.45%), B. methylotrophicus (97.37%), and B. ssiamensis (97.37%). Future through analysis and new strains confirmed the bacterial cell material investigation of JKM-3, and to ensure sufficient stability, it is desired to verify the utility value as a substitute material for antibiotics by application to the form of the industry.