Antifungal Activity of Bacillus vallismortis 1A against Phytopathogen

식물병원균에 대한 Bacillus vallismortis 1A 균주의 항진균 활성

  • Lee, Mi-Hye (Dept.of Technical Support, Yeojugun Agricultural Technology Center) ;
  • Kim, Soo-Jin (National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Chang-Muk (Dept. of Agriculrural Bio-resources, National Academy of Agricultural Science, Rural Development Administration) ;
  • Jang, Jae-Seon (Dept. of Food and Nutrition, Gachon University of Medicine and Science) ;
  • Chang, Hai-Joong (Dept.of Technical Support, Yeojugun Agricultural Technology Center) ;
  • Park, Min-Seon (Dept.of Biochemistry and Molecular Biology, Ajou University School of Medicine) ;
  • Koo, Bon-Sung (Dept. of Korean Food Research for Globalization, National Academy of Agricultural Science, Rural Development Administration) ;
  • Yoon, Sang-Hong (Dept. of Agriculrural Bio-resources, National Academy of Agricultural Science, Rural Development Administration) ;
  • Yeo, Yun-Soo (National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration)
  • 이미혜 (여주군 농업기술센터 기술 지원과) ;
  • 김수진 (국립농업과학원 농업유전자원센타) ;
  • 이창묵 (국립농업과학원 농업생명자원부) ;
  • 장재선 (가천의과학대학교 식품영양학과) ;
  • 장해중 (여주군 농업기술센터 기술 지원과) ;
  • 박민선 (아주대학교 생화학교실) ;
  • 구본성 (국립농업과학원 한식세계화연구단) ;
  • 윤상홍 (국립농업과학원 농업생명자원부) ;
  • 여윤수 (국립농업과학원 농업유전자원센타)
  • Received : 2008.09.19
  • Accepted : 2008.10.14
  • Published : 2008.10.30

Abstract

In order to isolate novel oligotrophic bacteria exhibiting antifungal activities, soils were collected from pepper-cultivated fields of Yeongyang, Jecheon, Nonsan, Eumsong and Goesan area in Korea. From soils in pepper cultivated area, a total of 9,354 strains were isolated as oligotrophic bacteria by the R2A dilution method. Among 9,354 oligotrohic bacteria candidates, 1A strain was selected by screening against Phytophthora capsici causing phytophthora blight of hot pepper in the greenhouse and field. The strain was identified as Bacillus vallismortis based on its 16S rDNA sequence and key characteristics as compared with those of authentic cultures of B. vallismortis(KACC 12149) and B. mojavensis(KACC 12096). The strain showed broad spectrum of antibiotic activity in vitro test, as revealed in its strong inhibitory activity to the genera Phytophthora, Collectotrichum, Botrytis and Fusarium, but not to Rhizoctonia and Magnaporthe. In pot experiments, infection rate of hot pepper in the non-treated pots was about 89%, while it was only 29% in the pots treated with 1A strain. The result indicated B. vallismortis 1A is a potential biocontrol agent for phytophthora blight of hot pepper

항진균성 활성을 가지는 저영양세균을 분리하기 위하여 토양시료는 경북 영양, 충북 제천, 충북 음성, 충북 괴산, 충남 논산 등지의 고추 밭에서 수집하였고 R2A배지를 이용하여 평판희석법으로 9,354여 균주의 저영양세균을 분리하였다. 분리된 저영양세균중 고추역병에 강한 활성을 가지는 1A 균주를 선발 하였으며 16S rDNA 와 표준균주(B. vallismortis, B. mojavensis)를 이용한 생리, 생화학적 실험으로 B. vallismortis로 최종동정 되었다. 1A균주는 Magnaporthe 균을 제외하고 Phytophthora, Collectotrichum, Botrytis, Fusarium 균등에서 폭넓게 강한 활성을 나타내었다. 고추 유묘검정에서 대조구가 89%정도의 발병율을 보인 반면에 1A 처리구에서는 29%의 발병율을 나타내어 고추역병의 길항균으로써의 미생물제제 가능성이 있는 것으로 판단된다.

Keywords

References

  1. Akihiro, O., A Takashi, and S. Makoto. 1992. Production of antifungal antibiotic, iturin in a solid state fermentation by Bacillus subtilis NB22 using wheat bran as a substrate. Biotechnol. Lett. 14:817-821. https://doi.org/10.1007/BF01029145
  2. Alexandra, K., and X. H. Chen. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 184:1084-1096.
  3. Alison J. V., W. K. Roberts, and C. P. Selityennikoff. 1991. A new family of plant antifungal proteins. Mol. Plant-Microbe Interact. 4:315-323. https://doi.org/10.1094/MPMI-4-315
  4. Grau, A., C. Juan, J. C. Gomez-Fernandez, F. Peypoux, and A. Ortiz. 2001. Aggregational behavior of aqueous dispersions of the antifungal lipopeptide iturin A. Peptides. 22:1-5. https://doi.org/10.1016/S0196-9781(00)00350-8
  5. Hiraoka. H. O., Asaka, T. Ano, and M. Shoda. 1992. Characterization of Bacillus subtilis RB14, Coproducer of peptide antibiotics iturin A and surfactin. J. Gen. Appl. Microbiol. 38:635-640. https://doi.org/10.2323/jgam.38.635
  6. Holt, J. G., N. R. Krieg, P. H. A. Sneath, J.T. Staley, and S. T. Williams. 1994. Bergey's Manual of Systematic Bacteriology. 9th. Williams & Wilkins, U.S.A
  7. Ishida, Y., and H. Kadota. 1981. Growth patterns and substrate requirements of naturally occurring obligate oligotrophs. Microbiol. Ecol. 7:123-130. https://doi.org/10.1007/BF02032494
  8. Jung, H, K., and S. D. Kim. 2003. Purification and characterization of an antifungal antibiotic from Bacillus megaterium KL39, a biocontrol agent of red -pepper Phytophthora blight disease. Kor. J. Appl. Microbiol. Biotechnol. 31:235-241.
  9. Kim, S. J., M. Y. Kim, B. S. Koo, S. H. Yoon, Y. S. Yeo, I. C. Park, Y. J. Kim, J. W. Lee, and K. S. Whang. 2005. Isolation and phylogenetic characterization of chitinase producing oligotrophic bacteria. Kor. J. Microbiol. 41: 293-299.
  10. Lee, K.S. 1997. Evaluation on the effects of pesticide residues to agroecosystem in Korea. Kor. J. Environ. Agric. 16:80-93.
  11. Mahaffe,W.F., and P. A. Backman. 1993. Effects of seeds factors on spermosphere and rhizosphere colonization of cotton by Bacillus subtilis GB03. Phytochemistry. 83:1120-1125.
  12. Nikitin, D.I., and K.V. Chumakov. 1985. The functional of role of oligotrophic microorganisms. In V.Jensen(ed.), Microbial communi ties in soil. FEMS symposium. 33:177-189.
  13. Ohta, H., and T. Hattori. 1980. Bacteria sensitive to nutrient broth medium in terrestrial environments. Soil Sci. Plant Nutr. 26:99-107. https://doi.org/10.1080/00380768.1980.10433216
  14. Phister, T. G., D. J. O'Sullivan, and L. L. McKay. 2004. Identification of bacilysin, chlorotetaine, and iturin A produced by Bacillus sp. strain CS93 isolated from Pozol, a Mexican fermented maize dough. Appl. Environ. Microbiol. 70:631-634. https://doi.org/10.1128/AEM.70.1.631-634.2004
  15. Roongsawang, T., T. Kameyama, M. Haruki, and M. Morikawa. 2002. Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles. 6:499-506. https://doi.org/10.1007/s00792-002-0287-2
  16. Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  17. Spadaro, D., and M. Gullino. 2005. Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Prot. 24:601- 613. https://doi.org/10.1016/j.cropro.2004.11.003
  18. Tsuge, K., T., Ano, and M. Shoda. 1996. Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YM8. Arch. Microbiol. 165:243-251. https://doi.org/10.1007/s002030050322
  19. Vanittanakam, N., and W. Loeffler. 1986. Fengycin ? a novel antifungal lipopeptide antibiotics produced by Bacillus subtilis F29-3. J. Antibiotics (Tokyo) 39:888-901. https://doi.org/10.7164/antibiotics.39.888
  20. Wang, J., J. Liu, X. Wang, J. Yao, and Z. Yu. 2004. Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis. Lett. Appl. Microbiol. 39:98-102. https://doi.org/10.1111/j.1472-765X.2004.01547.x
  21. Whang, K., and T. Hattori. 1988. Oligotrophic bacteria in rendzina a forest soil. Antonie van Leewenhoke. 54:19-36. https://doi.org/10.1007/BF00393955
  22. Yoo. J. K., K. H. Ryu, J. H. Kwon, and S. S. Lee. 1998. Fungicidal?activity of oriental medicinal plant extracts against plant pathogenic fungi. Agric. Chem. Biothechnol. 41:600-604.
  23. Zhu, H., F. Qu, and L. Zhu. 1993. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res. 21:5279-5280. https://doi.org/10.1093/nar/21.22.5279