• Title/Summary/Keyword: Bacillus subtilis C1

Search Result 468, Processing Time 0.028 seconds

Study on the Productivity of Aflatoxin through the Interaction of Bacillus subtilis & Aspergillus flavus (Aspergillus flavus와 Bacillus subtilis의 혼합배양에 의한 Aflatoxin생성에 관하여)

  • 서명자
    • Korean Journal of Microbiology
    • /
    • v.17 no.2
    • /
    • pp.72-80
    • /
    • 1979
  • 24 samples which were incoulated with Aspergillus flavus and Bcillus subtilis and cultured on the steamed soybean media under various conditions-pH, moisture and temperature were-investigated on the production of aflatoxin by the interaction of these two microorganisms. 1) The amount of aflatoxin produced by mixed cultures of Aspergillus flavus and Bacillus subtilis was decreased significantly rather than that of single cultures of Aspergillus flavus. 2) Maximum production of crude aflatoxin was 2,560 ppm $(B_1,\;0.908\;ppm;\;B_2,\;0.261\;ppm;\;G_1,\;1.162\;ppm;\;G_2,\;0.229\;ppm)$ at 30% moisture, pH 5.0 and $20^{\circ}C$, whereas minimum production was 1.107 ppm $(B_1,\;0.341\;ppm;\;B_2,\;0.104\;ppm;\;G_1,\;532\;ppm;\;G_2,\;0.130\;ppm)$ at 63% moisture, pH 9.0 and $40^{\circ}C$.

  • PDF

Optimization for Pigment Production and Antioxidative Activity of the Products by Bacillus subtilis DC-2 (Bacillus subtilis DC-2의 색소 생성 및 그 생성물에 대한 항산화성의 최적화)

  • 정영건;최웅규;지원대;정현채;최동환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.6
    • /
    • pp.1039-1043
    • /
    • 1997
  • Correlation among color intensity, electron donating ability to $\alpha$, $\alpha$-diphenyl-$\beta$-dicrylhydrazy(DPPH) and cultivation conditions by Bacillus subtilis DC-2 were tested with response surface methodology. Both of pigment generation ability and DPPH were more affected by temperature than any other factor. The highest correlation was appeared between color intensity and DPPH as 0.8364 which is significant at 1% level. After fixing cultivation time which is not significant at 10% level to 84hrs as optical cultivation time, response surface methodology was conducted in regarding temperature and color intensity. As a result of overlapped contour map of color intensity and DPPH, when cultivation temperature was in the range of 38.9~41.1$^{\circ}C$ and pH was in the range of 8.34~9.12, optical density of color intensity was predicted higher than 0.374 at 390nm and DPPH was infered higher than 1.310 at 528nm. In the range of optical culture condition, cultivation temperature, pH and cultivation time was fixed to 4$0^{\circ}C$, 8.5 and 85hrs, respectively. In resulting, observation value of color intensity and DPPH was in the range of anticipation value as 0.386 at 390nm and 1.332 at 528nm respectively.

  • PDF

Purification and Characterization of Fibrinolytic Enzyme Excreted by Bacillus subtilis K-54 Isolated from Chung Guk Jang. (청국장에서 분리한 Bacillus subtilis K-54가 분비하는 혈전용해효소의 정제 및 특성)

  • 유천권;서원상;이철수;강상모
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.507-514
    • /
    • 1998
  • The strain K-54, the best producer of fibrinolytic enzyme, was isolated from Korean traditional food Chung Guk Jang and identified as Bacillus subtilis. Fibrinolytic enzyme was purified and characterized, and its molecular weight was determined. The fibrinolytic enzyme activity was increased about 66.9 times via purification with recovery yield of 10.1%. The optimum pH and temperature of this enzyme were 11 and $65^{\circ}C$. The enzyme was stable within a pH range 8-12 and unstable at 9$0^{\circ}C$. The molecular weight was estimated to be 29,000 dalton in the form of monomer with no other subunit. The isoelectric point was calculated 8.67. N-terminal sequence was identified Ala-Gly-Ser-Val-Pro-Try-Gly-Ser. Km value of the enzyme for $\alpha$-casein was calculated to be 0.31 (3.1 mg/$m\ell$). The enzyme activity highly inhibited by PMSF at 1 nM.

  • PDF

Characteristics and Action Pattern of Pretense from Bacillus subtilis CCKS-111 in Korean Traditional Soy Sauce (한국재래간장으로 부터 분리한 Bacillus subtilis CCKS-111이 생성하는 Protease의 특성 및 작용양상)

  • Choi, Cheong;Choi, Kwang-Soo;Cho, Young-Je;Lim, Sung-il;Kim, Sung;Son, Jun-Ho;Lee, Hee-Duck;Kim, Young-Hwal
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.6
    • /
    • pp.915-921
    • /
    • 1996
  • An alkaline pretense Producing microorganism was isolated from Korean traditional soy sauce and identified as Bacillus subtilis CCKS-111. The optimum culture condition of Bacillus subtilis CCKS-111 for the production of alkaline pretense was as follow: 2% soluble starch, 0.2% peptone, 0.1% (NB$_4$)$_2$S$_2$O$_{8}$ , 0.2% MgSO$_4$, pH 7.0, 35$^{\circ}C$ and 24hrs. The optimum pH and temperature for the enzyme activity of alkaline pretense producing Bacillus subtilis CCKS-111 were pH 9.0 and 5$0^{\circ}C$, respectively. The enzyme was relatively stable at pH 6.0~11.0 and at temperature below 4$0^{\circ}C$. The activity of the enzyme was inhibited by $K^{+}$ and Hg$^{2+}$, whereas Cu$^{2+}$ exhibited rather activating effects on the enzyme activity. Ethylenediaminetetraacetic acid and phenylmethanesulfonyl fluoride inhibited the enzyme activity. This indicates that this is serine pretense which requires metal ion group for the enzyme activity. Km value was 2.313$\times$10$^{-4}$ M/L, V$_{max}$ value was 39.216$\mu\textrm{g}$/min. This enzyme hydrolyzed casein more rapidly than the hemoglobin.lobin.

  • PDF

Structural Identification of $Siderophore_{AH18}$ from Bacillus subtilis AH18, a Biocontrol agent of Phytophthora Blight Disease in Red-pepper (Bacillus subtilis AH18의 고추역병 방제능과 $Siderophore_{AH18}$의 구조분석)

  • Woo, Sang-Min;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.326-335
    • /
    • 2008
  • The siderophore ($siderophore_{AH18}$) of Bacillus subtilis AR18 was determined to be one of catechol type and purified by using Amberlite XAD-2, Sephadex LR-20 chromatography, and reversed-phase RPLC. The $Siderophore_{AH18}$ was identified bacillibactin with its structure by GC-MS, $^1H$-NMR, and $^{13}C$-NMR. $Siderophore_{AH18}$ (bacillibactin) had been confirmed its molecular weight of 883 and chemical structure of $(2,3-dihydroxybenzoate-glycine-threonine)_3$. Purified $siderophore_{AH18}$ showed strong biocontrol ability towards the spore of Phytophthora capsici on PDA and able to effectively suppress (55%) P. capsici causing red-pepper blight in the pot in vivo test.

생물방제균 Bacillus subtilis YB-70이 생산하는 항진균성 항생물질의 분리 및 구조결정

  • Kim, Yong-Su;Son, Jong-Keun;Moon, Dong-Chul;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.62-67
    • /
    • 1997
  • A potential biocontrol bacterium, YB-70 was isolated from a rhizosphere in suppressive soil and identified as a strain of Bacillus subtilis. In several biochemical and in vitro antibiosis tests on Fusarium solani with the culture filterates from B. subtilis YB-70, we found that antifungal mechanism of B. subtilis YB-70 was mediated by antibiotic substances produced from the bacterium. These antifungal substances were appeared to be hear-resistant, micromolecular, and ethy alcohol soluble. Antifungal agents produced by B. subtilis YB-70 showed strong inhibified against root-rotting fungi F. solani in in vivo pot test. An antifungal substance. YBS-1s, was purified from the culture broth of B. subtilis YB-70 by isoelectronic precipitation, silica gel column chromatography and Sephadex LH-20 column chromatography analysis by Fab-MASS, $^{1}$H-NMR, $^{13}$C-NMR, DEPT, and amino acid analyzer revealed that the YBS-1A was a peptide antibiotics of iturin class containing seven amino acids from five different groups, and the other(YBS-1B) was an analogue of iturin group composed of 11 amino acids with larher molecular weight of about 1, 500 dalton, which was lager than that of iturin A.

  • PDF

The isolation of Bacillus subtilis KYS-10 with antifungal activity against plant pathogens (식물 병원균에 대한 항진균 활성을 갖는 Bacillus subtilis KYS-10의 분리)

  • Kang, Dae-Won;Ryu, Il-Hwan;Han, Seong-Soo
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.2
    • /
    • pp.178-186
    • /
    • 2012
  • This study was investigated for the purpose of the isolation and identification of antagonistic bacteria with antifungal activity against plant pathogens. This bacteria denominated Bacillus subtilis KYS-10 and the optimum growth condition were 4% sucrose, 1% yeast extract, 0.2% $K_2HPO_4$, pH 7, 150 rpm, $30^{\circ}C$, 8 day. The antifungal activities against nine plant pathogens determined inhibition zone size by diffusion methods. The results, G. zeae (scab) 70 mm and P. grisea KACC 40439 (blast), P. capsici KACC 40177 (phytophthora blight) and C. destructans KACC 41077 (root rot of ginseng) 40~43 mm, and C. gloeosporioides KACC 43520 (ripe rot), C. gloesporioides KACC 40003 (anthracnose), S. shiraiana KACC 41065 (stem rot) and S. shiraiana (mulberry sclerotial disease) 35~39 mm and F. Oxysporum KACC 44452 (bulb rot of ginseng) 28 mm. From these experiment results, author suggest that Bacillus subtilis KYS-10 would be developed as a biological control agent thorough the field experimet in the near future.

Effects of Environmental and Nutritional Conditions on Fibrinolytic enzyme Production from Bacillus subtilis BK-17 in Flask Culture (플라스크 배양에서 Bacillus subtilis BK-17의 혈전용해효소 생산에 대한 환경 및 영양 조건의 영향)

  • 최원아;이진욱;이경희;박성훈
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.491-496
    • /
    • 1998
  • The production of fibrinolytic enzyme from Bacillus subtilis BK-17 was studied in the shake flask cultures. The important medium components studied include nitrogen source, carbon source and inorganic salts. The environmental conditions include initial pH, temperature, shaking speed and working volume. Among various N-sources, C-sources and inorganic salts tested, soybean flour, D-glucose and Na2HPO4 gave the best results, and their optimal concentrations were 1.5%, 0.5% and 0.05%, respectively. The optimal pH and temperature were 9.0 and 37$^{\circ}C$. With decreasing working volume in the range of 25∼100ml in the 250ml flask or increasing shaking speed in the range of 100∼300rpm, the enzyme production was greatly enhanced. The enzyme activity under the optimal conditions was about 1400I.U./ml with urokinase as a standard.

  • PDF

Characterization of Bacteriocin-Like Substances Produced by Bacillus subtilis MJP1 (Bacillus subtilis MJP1이 생산하는 Bacteriocin-Like Substances)

  • Yang, Eun-Ju;Chang, Hae-Choon
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.4
    • /
    • pp.339-346
    • /
    • 2007
  • The MJP1 bacterial strain, which possesses antifungal activity, was isolated from meju and identified as Bacillus subtilis based on its morphological and biochemical properties, as well as its 16S rRNA sequence. Antimicrobial activity was found against various species of Gram-positive bacteria, yeasts, and molds, including food-spoilage microorganisms. The antifungal activity was found to be stable after heat and proteolytic enzyme treatment, and in the pH range of $6.0{\sim}10.0$. The antibacterial activity was stable in the pH range of $6.0{\sim}10.0$, but about 50% of the activity was lost after 24 hr at $30^{\circ}C$. The antibacterial compound was also inactivated by proteolytic enzyme treatment, indicating its proteinaceous nature. The apparent molecular masses of the partially purified antifungal and antibacterial compounds, as indicated by using the direct detection method in Tricine-SDS-PAGE, were approximately 2.4 kDa and 4.5 kDa, respectively. These studies suggest that B. subtilis MJP1 produces two bacteriocin-like substances with antifungal and antibacterial activities.

An Auxin Producing Plant Growth Promoting Rhizobacterium Bacillus subtilis AH18 which has Siderophore-Producing Biocontrol Activity (Auxin과 Siderophore 생산성 다기능 생물방제균 Bacillus subtilis AH18)

  • Jung Hee-Kyoung;Kim Jin-Rak;Woo Sang-Min;Kim Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.94-100
    • /
    • 2006
  • To isolate a bacterium that produces plant growth promoting hormone, a total of 29 bacteria were obtained from the soil in Gyeongsan, Korea. Among these, 14 strains were selected by their positive reaction on Salkowski to produce auxin. All of these were then tested for their property to produce siderophore using CAS (chrome azurol S) blue agar, and one was chosen for its ability to produce both, auxin and siderophore. This strain, denoted, AHl8, showed 1.5 times higher adventitious root induction rates than controls, using mung-beans. The strain also showed efficient biocontrol properties towards Fusarium-wilt of tomatoes in artificial pot assays. The strain was identified as Bacillus subtilis by 16s rDNA comparison and Biolog analyses. Growth and media conditions for Bacillus subtilis AH1 8 to highly produce siderophore were also investigated.