• Title/Summary/Keyword: Bacillus species

Search Result 554, Processing Time 0.029 seconds

Degradation capability of macromolecular organic matters and antimicrobial activities of Bacillus species isolated from surf clam (Tresus keenae) (왕우럭(Tresus keenae)에서 분리된 Bacillus species의 고분자 유기물질 분해능력과 항균활성)

  • Yi, Seung-Won;Moon, Sung-Hyun;Cho, Ho-Seong;Kim, Chul-Won
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.4
    • /
    • pp.265-275
    • /
    • 2017
  • The production of enzymes that help digestion, assimilation of essential nutrients, and prevent pathogenic bacteria are important for probiotics used in aquaculture. The objective of this study was to investigate enzyme activities for macromolecular organic matters and antimicrobial properties of the selected potential probiotics isolated from gut of surf clam (Tresus keenae) against well-known shellfish-pathogenic bacteria. Among 65 isolates from guts of 60 surf clams, seven Bacillus strains with outstanding degradation capability of macromolecule organic matter were selected as potential probiotics as follows: TKI01 (B. vietnamensis), TKI02, TKI26 (B. thuringiensis), TKI14, TKI32, TKI42 (B. amyloliquefaciens), and TKI18 (B. stratosphericus). After in vitro antimicrobial activity test was performed against five shellfish-pathogenic bacteria including Listonella anguillarum, Vibrio parahaemolyticus, V. splendidus, V. harveyi, V. tubiashii, PCR assay was performed to detect bacteriocin-producing strain. PCR results revealed that the five Bacillus strains possessed diverse bacteriocin genes including ericinA, coagulin, surfactin, iturin, bacyllomicin, fengycin, bacylisin, subtilin, and lantibiotics. In the present study, the selected seven Bacillus strains showed different enzyme activities according to types of macromolecule organic matters. And their antimicrobial activities varied based on the species of pathogenic bacteria. In addition, at least five Bacillus strains had genetic potential to produce several natural lipopeptide antibiotics that may help biological control of surf clam aquaculture. Therefore, mixed use of probiotics might show co-operative effect and increase the efficiency of probiotics rather than separate use. To the best of our knowledge, it is the first report on antimicrobial properties of Bacillus species isolated from surf clam.

Bacillus ginsengihumi sp. nov., a Novel Species Isolated from Soil of a Ginseng Field in Pocheon Province, South Korea

  • Ten Leonid N.;Im Wan-Taek;Baek Sang-Hoon;Lee, Jung-Sook;Oh, Hee-Mock;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1554-1560
    • /
    • 2006
  • A Gram-positive, aerobic or facultative anaerobic, non motile, endospore-forming bacterial strain, designated Gsoil $114^T$, was isolated from a soil sample of a ginseng field in Pocheon Province (South Korea), and was characterized taxonomically by using a polyphasic approach. It grew well on nutrient agar medium and utilized a limited number of organic substrates as sole carbon sources, including D-xylose and some other carbohydrates, but did not utilize L-amino acids and organic acids. The isolate was positive for oxidase test but negative for catalase, and negative for degradation of macromolecules such as starch, cellulose, xylan, casein, chitin, and DNA. The G+C content of the genomic DNA was 41.8 mol%. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The major fatty acids were $anteiso-C_{15:0}$ (32.1%), $iso-C_{15:0}$ (30.5%), and $anteiso-C_{17:0}$ (30.2%). Comparative 16S rRNA gene sequence analysis showed that strain Gsoil $114^T$ fell within the radiation of the cluster comprising Bacillus species and joined Bacillus shackletonii LMG $18435^T$ with a bootstrap value of 95%. The highest 16S rRNA gene sequence similarities were found with Bacillus shackletonii LMG $18435^T$ (97.6%), Bacillus acidicola DSM $14745^T$ (96.9%), Bacillus sporothermodurans DSM $10599^T$ (96.5%), and Bacillus oleronius DSM $9356^T$ (96.5%). The phylogenetic distance from any other validly described species within the genus Bacillus was less than 96%. DNA-DNA hybridization experiments showed that the DNA-similarities between strain Gsoil $114^T$ and closest phylogenetic neighbors were less than 39%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil $114^T$ (=KCTC $13944^T$=DSMZ $18134^T$) was classified in the genus Bacillus as the type strain of a novel species, for which the name Bacillus ginsengihumi sp. nov. is proposed.

Identification and Distribution of Bacillus Species in Doenjang by Whole-Cell Protein Patterns and 16S rRNA Gene Sequence Analysis

  • Kim, Tae-Woon;Kim, Young-Hoon;Kim, Sung-Eon;Lee, Jun-Hwa;Park, Cheon-Seok;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1210-1214
    • /
    • 2010
  • Many bacteria are involved in the fermentation of doenjang, and Bacillus species are known to perform significant roles. Although SDS-PAGE has been frequently used to classify and identify bacteria in various samples, the microbial diversity in doenjang has not yet been investigated. This study aims to determine the identity and distribution of dominant Bacillus species in doenjang using SDS-PAGE profiles of whole-cell proteins and 16S rRNA gene sequencing. Reference Bacillus strains yielded differential SDS-PAGE banding patterns that could be considered to be highly specific fingerprints. Grouping of bacterial strains isolated from doenjang samples by whole-cell protein patterns was confirmed by analysis of their 16S rRNA gene sequences. B. subtilis was found to be the most dominant strain in most of the samples, whereas B. licheniformis and B. amyloliquefaciens were less frequently found but were also detected in several samples. The results obtained in this study show that a combined identification method using SDS-PAGE profiles of whole-cell proteins and subsequent 16S rRNA gene sequence analysis could successfully identify Bacillus species isolated from doenjang.

Discrimination of Bacillus subtilis from Other Bacillus Species Using Specific Oligonucleotide Primers for the Pyruvate Carboxylase and Shikimate Dehydrogenase Genes

  • Lee, Gawon;Heo, Sojeong;Kim, Tao;Na, Hong-Eun;Park, Junghyun;Lee, Eungyo;Lee, Jong-Hoon;Jeong, Do-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1011-1016
    • /
    • 2022
  • Bacillus subtilis is a useful bacterium in the food industry with applications as a starter strain for fermented food and as a probiotic. However, it is difficult to discriminate B. subtilis from other Bacillus species because of high phenotypic and genetic similarity. In this study, we employed five previously constructed multilocus sequence typing (MLST) methods for the discrimination of B. subtilis from other Bacillus species and all five MLST assays clearly distinguished B. subtilis. Additionally, the 17 housekeeping genes used in the five MLST assays also clearly distinguished B. subtilis. The pyruvate carboxylase (pyrA) and shikimate dehydrogenase (aroE) genes were selected for the discrimination of B. subtilis because of their high number of polymorphic sites and the fact that they displayed the lowest homology among the 17 housekeeping genes. Specific primer sets for the pyrA and aroE genes were designed and PCR products were specifically amplified from B. subtilis, demonstrating the high specificity of the two housekeeping genes for B. subtilis. This species-specific PCR method provides a quick, simple, powerful, and reliable alternative to conventional methods in the detection and identification of B. subtilis.

Comparison of Antifungal Activity, Plant Growth Promoting Activity, and Mineral-Solubilizing Ability of Bacillus sp. Isolated from Rhizosphere Soil and Root (근권 토양과 뿌리로부터 분리된 Bacillus sp.의 항진균 활성, 식물 생장 촉진 활성 및 미네랄 가용화능 비교)

  • Kim, Hee Sook;Oh, Ka-Yoon;Lee, Song Min;Kim, Ji-Youn;Lee, Kwang Hui;Lee, Sang-Hyeon;Jang, Jeong Su
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.576-586
    • /
    • 2021
  • The purpose of this study was to evaluate the antifungal activity, plant-growth-promoting activity, and mineral solubilization ability of 10 species of phytopathogenic fungi to select a Bacillus sp. from rhizosphere soils and roots that can be used as a microbial agent. The antifungal activity for phytopathogenic fungi varied based on the Bacillus sp. Among the selected strains, DDP4, DDP16, DDP148, SN56, and SN95 exhibited antifungal activity for nine or more species of phytopathogenic fungi. Regarding nitrogen-fixation ability, all Bacillus sp. showed similar levels of activity, and siderophore production ability was relatively high in ANG42 and DDP427. The indole-3-acetic acid production abilities were in the range of 1.83-67.91 ㎍/ml, with variations in activity based on the Bacillus sp. One strain with a high activity was selected from each species, and their mineral solubilization abilities were examined. Most Bacillus sp. could solubilize phosphoric acid and calcium carbonate, and DDP148 and SN56 could solubilize silicon and zinc, respectively. These results suggested that Bacillus sp. can be considered potential multi-purpose microbial agents for plant growth promotion and disease prevention.

Assessment of Probiotic Potential of Bacillus spp. Isolated from Ulleungdo, Korea (울릉도 토양에서 분리한 Bacillus 속 균주의 프로바이오틱 잠재성 평가)

  • Myeong Uk Sim;Dukki Han
    • Journal of Marine Life Science
    • /
    • v.8 no.1
    • /
    • pp.50-55
    • /
    • 2023
  • Probiotics have been isolated from various environments and Bacillus species are advantageous among the probiotic bacteria due to their ability to form endospores that can compensate for the limitation of typical probiotics such as lactic acid bacteria. The aim of this study is to investigate the probiotic potential of Bacillus species from Ulleungdo soil, known as an unpolluted environment in Korea. Soil samples were collected from various areas of Ulleungdo, and Bacillus spp. were isolated, and assessed for antibiotic resistance and enzymatic activity. Six Bacillus spp. were not resistant to all tested antibiotics and subsequently tested for enzyme activity. We found the six Bacillus spp. were all inactive β-glucuronidase enzyme, which can have detrimental effects on human health, and one of Bacillus spp. showed an activity of Leucine arylamidase suggesting its probiotic potential.

Analysis of the Bacterial Community in Ojingeo-jeotgal and Selection of Bacillus Species Inhibiting the Growth of Food Pathogens (오징어젓갈 Bacteria 군집분석 및 식중독균 생육저해 Bacillus 균주 선발)

  • Kim, Hye-Rim;Han, Seulhwa;Lee, Bitnara;Jeong, Do-Won;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.4
    • /
    • pp.462-468
    • /
    • 2013
  • Jeotgal is a generic term given to the high-salt-fermented seafood of Korea. This study aimed at developing an overview of the bacterial community present in Ojingeo-jeotgal, a highly consumed type of jeotgal, which is made with squid. Bacteria were isolated and purified from two samples on six different kinds of media and identified by 16S rRNA gene sequence analysis. Among the 121 total isolates, the most dominant genus was Bacillus, followed by coagulase-negative staphylococci (CNS) and lactic acid bacteria (LAB). CNS were detected in both samples, but LAB were observed in only a single sample. Six strains of Bacillus species inhibiting the growth of food pathogens, Staphylococcus aureus and Vibrio parahaemolyticus, were selected from the 121 isolates. These were found to inhibit the growth of both pathogens in addition to displaying proteolytic activities on media containing 6% NaCl and 2% skim milk.

Characterization of Endogeneous Plasmids from Two Bacillus Isolates (Bacillus 속 분리균 2종의 내재형 Plasmids 특성분석)

  • 윤기홍
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.5
    • /
    • pp.364-369
    • /
    • 1999
  • In order to obtain the suitable plasmids for constructing plasmid vectors of Bacillus species, endogeneous plasmid DNAs were screended from thermo-tolerant soil bacteria. Based on agarose gel electrophoresis patterns of the isolated plasmid DNAs, two strains harboring small-size plasmids were selected. The isolated were identified to belong to the genus Bacillus on the basis of their morphological and biochemical properties, and named Bacillus sp. 3-3 and 77-8, respectively. The restriction endonuclease maps were determined for four plasmids including two plasmids from each Bacillus isolates. It is interesting that Bacillus sp. 3-3 and 77-8 have an identical plasmid according to the restriction maps. The three kinds of hybrid plasmids constructed by introducing each plasmid of two isolates into a Escherichia coli plasmid vector. pUCCm18 containing chloramplenicol resistance gene active in Bacillus strains, could be replicated in B. subtilis and B. licheniformis. These plasmids are very stable in B. subtilis, suggesting that the Bacillus plasmids identified in this work would be useful for development of new cloning vectors for Bacillus strains.

  • PDF

Characterization of Two Urease-Producing and Calcifying Bacillus spp. Isolated from Cement

  • Achal, Varenyam;Mukherjee, Abhijit;Reddy, M. Sudhakara
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1571-1576
    • /
    • 2010
  • Two bacterial strains designated as CT2 and CT5 were isolated from highly alkaline cement samples using the enrichment culture technique. On the basis of various physiological tests and 16S rRNA sequence analysis, the bacteria were identified as Bacillus species. The urease production was 575.87 U/ml and 670.71 U/ml for CT2 and CT5, respectively. Calcite constituted 27.6% and 31% of the total weight of sand samples plugged by CT2 and CT5, respectively. Scanning electron micrography analysis revealed the direct involvement of these isolates in calcite precipitation. This is the first report of the isolation and identification of Bacillus species from cement. Based on the ability of these bacteria to tolerate the extreme environment of cement, they have potential to be used in remediating the cracks and fissures in various building or concrete structures.

Twelve previously unrecorded bacterial species, isolated from the Nakdong River, South Korea

  • Kim, Hyangmi;Han, Ji-Hye
    • Journal of Species Research
    • /
    • v.10 no.2
    • /
    • pp.134-141
    • /
    • 2021
  • During a survey of indigenous prokaryotic species diversity of the upstream Nakdong River, South Korea, 12 bacterial strains were isolated for further analysis. These bacterial strains were identified showing at least 98.7% 16S rRNA gene sequence similarity with known bacterial species that were previously unreported in South Korea. The 12 bacterial strains were phylogenetically diverse and assigned to four classes, eight orders, nine families, and ten different genera. The isolates were identified as Leucobacter holotrichiae (99.1%), Leucobacter tardus (99.9%), Rhodococcus rhodochrous (99.9%), Tessaracoccus oleiagri (100%), and Paeniglutamicibacter cryotolerans (99.3%), of the class Actinobacteria; Bacillus coagulans (99.7%) and Bacillus wudalianchiensis (99.1%) of the class Bacilli; Ochrobactrum pseudogrignonense (99.2%) and Paracoccus thiocyanatus (100%) of the class Alphaproteobacteria; and Ideonella azotifigens (99.0%), Polaromonas glacialis(99.3%), and Herbaspirillum seropedicae (99.5%) of the class Betaproteobacteria. The cellular and colonial morphology, biochemical properties, and phylogenetic position of these isolates were examined, and species descriptions are provided.