• Title/Summary/Keyword: Bacillus sp. H9-1

Search Result 99, Processing Time 0.03 seconds

Isolation and characterization of cellulolytic bacteria, Bacillus sp. EFL1, EFL2, and EFP3 from the mixed forest (혼효림으로부터 셀룰로오스분해 박테리아 분리 및 효소학적 특성규명)

  • Park, Hwa Rang;Oh, Ki-Cheol;Kim, Bong-Gyu
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.1
    • /
    • pp.59-67
    • /
    • 2018
  • This study was conducted to isolate the cellulolytic bacteria able to grow on LB- Carboxymethyl cellulose (CMC) agar trypan blue medium from the mixed forest and Larix leptolepis stands. Three bacterial strains with high activity against both CMC and xylan were isolated. Both API kit test and 16S rRNA gene sequence analysis revealed that the three different isolates belong to the gene Bacillus. Therefore, the isolates named as Bacillus sp. EFL1, Bacillus sp. EFL2, and Bacillus sp. EFP3. The optimum growth temperature of Bacillus sp. EFL1, EFL2, and EFP3 were $37^{\circ}C$. The optimum temperature for CMCase and xylanase from Bacillus sp. EFL1 were $50^{\circ}C$. The optimum pH of Bacillus sp. EFL1 xylanase was pH 5.0 but the optimum pH of CMCase from Bacillus sp. EFL1 was pH 6.0. The optimum temperature of CMCase and xylanase from Bacillus sp. EFL2 was $60^{\circ}C$, respectively. The optimum pH of CMCase of Bacillus sp. EFL2 was 5.0, whereas xylanase showed high activity at pH 3.0-9.0. The optimum temperature for CMCase and xylanase of Bacillus sp. EFP3 was $50^{\circ}C$. The optimum pH for CMCase and xylanse was 5.0 and 4.0, respectively. CMCases from Bacillus sp. EFL1, EFL2, and EFP3 were thermally unstable. Although xylanase from Bacillus sp. EFL1 and EFP3 showed to be thermally unstable, xylanase from Bacillus sp. EFL2 showed to be thermally stable. Therefore, Bacillus sp. EFL2 has great potential for animal feed, biofuels, and food industry applications.

Isolation and Growth Characteristics of Alkalophilic Bacillus sp. for Removal of Anthraquinone Dye. (Anthraquinone계 염료의 제거를 위한 호알칼리성 Bacillus sp.의 분리와 성장 특성)

  • 김정목
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.67-71
    • /
    • 2001
  • Isolation and Growth Characteristics of AIkalophilic Bacillus sp. for Removal of Anthraquinone Dye. Kim, Jeong-Mog. School of Environmental Information, Taekyeung College, Kyungsan, 712-850, Korea -Alkalophilic strain degrading and decolorizing anthraquinone dye, Remazol brilliant blue R was isolated from natural system and named as Bacillus sp. ARB!. The optimal temperature and pH of Bacillus sp. ARBI were 35°C and 9.0, respectively. The pH of culture media during the fermentation were changed from 10 and 10.5 of initial values to 9.3 and 9.4 after 40 hrs, respectively. Decolorization efficiency in aerobic shaking culture of Bacillus sp. ARBI was markedly higher than that in standing culture. At the optimal culture condition, decolorization efficiency by the Bacillus sp. ARBl was 93% after 32 hrs batch culture. In the case of batch culture using real dye processing wastewater, dye decolorization efficiency of Bacillus sp. ARBl was 78% after 40 hrs.

  • PDF

Effect of pH on the Production and Characteristics of Protease by Bacillus sp. SH-8 and Bacillus sp. SH-8M (Bacillus sp. SH-8과 Bacillus SP. SH-8M의 Protease 생산 및 특성에 미치는 pH의 영향)

  • Shim, Chang-Whan;Jeong, Kwang-Seon;Shin, Won-Cheol;Yu, Ju-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.59-64
    • /
    • 1994
  • The production and the characteristics of protease produced by Bacillus sp. SH-8 and Bacillus sp. SH-8M were investigated under the different pH conditions. Bacillus sp. SH-8 and Bacillus sp. SH-8M showed the maximum activity of protease at 60 hours(70 units/ml) AND 96 houre(50 units/ml) cultivation, respectively, under the alkaline condition(pH 10.2). However, Bacillus sp. SH-8M exhibited the maximum activities in 8 days cultivation at pH 6.9 and in 6 days cultivation at pH 7.7 Bacillus sp. SH-8M showed the protease activity at the pH change from alkaline to neutral condition, whereas Bacillus sp. SH-8 did not. In addition. all the enzymatic characteristics of protease produced by Bacillus sp. SH-8 and Bacillus sp. SH-8M were similar with the regardless of different pH conditions.

  • PDF

Isolation and Characterization of α-Glucosidase Inhibitor Produced by Bacillus sp. SKU31-1 Strain (Bacillus sp. SKU31-1가 생산하는 α-Glucosidase 저해제 분리 및 특성 조사)

  • Kim, Shin-Duk
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.381-383
    • /
    • 2014
  • In the course of screening for ${\alpha}$-glucosidase inhibitor produced by microorganism, the active compound was isolated from the culture filtrate of Bacillus sp. SKU31-1 using a series of chromatography procedures. The structure of the active compound was elucidated as 5-amino-1-hydroxymethyl-1, 2, 3, 4-cyclohexanetetrol on the basis of spectroscopic evidence obtained and comparison with data from the literature. The active compound showed potent inhibitory activity against ${\alpha}$-glucosidase with an $IC_{50}$ value of $1.9{\mu}M$ for maltose and 4.9 mM for sucrose. A Lineweaver-Burk plot indicated that its inhibition of ${\alpha}$-glucosidase was competitive, with a $K_i$ value of 0.15 mM.

Isolation, Identification and Optimal Culture Condition of Bacillus sp. FF-9 Having Antifungal on the Turf Grass Pathogens Caused by Rhizoctonia solani AGII-II (Rhizoctonia solani AGII-II에 대한 항진균 활성을 가지는 Bacillus sp. FF-9의 분리.동정 및 최적 배양조건)

  • Park, Jin-Chul;Yoo, Ji-Hyun;Cha, Jae-Young;Kim, Min-Seok;Cho, Young-Su
    • Applied Biological Chemistry
    • /
    • v.47 no.4
    • /
    • pp.373-378
    • /
    • 2004
  • In this study, established soil-borne Bacillus sp. FF-9 with strong antifungal activity was isolated for identification and to determine optimal culture condition. By using 16s rDNA sequencing method, FF-9 of the selected bacteria was identified as genus Bacillus sp., Bacillus sp. FF-9 was cultured at $30^{\circ}C$, for 24 h in the LB medium. Cell growth increased quickly after 6 h and the highest cell growth was indicated at 12 h. The most antifungal activity against Rhizoctoina solani AGII-II appeared at 18 h and the optimal temperature and pH were 30 and pH 8.0, respectively. A testing of carbon and nitrogen sources showed the highest antifungal activity at 1% lactose and 1% yeast extract Furthermore an addition of salt showed the most antibiotic activity in the 0.15% $K_2HPO_4$.

Optimization of Cellulolytic Enzyme Production for newly isolated Bacillus sp. H9-1 from Herbivore Feces (초식동물 배설물로부터 분리한 Bacillus sp. H9-1의 섬유소 분해효소생산 최적화)

  • Yoon, Young Mi;An, Gi Hong;Kim, Jung Kon;Cha, Young-Lok;Park, Yu Ri;Ahn, Jong-Woong;Moon, Youn-Ho;Ahn, Seung-Hyun;Koo, Bon-Cheol;Park, Kwang-Geun
    • KSBB Journal
    • /
    • v.28 no.1
    • /
    • pp.42-47
    • /
    • 2013
  • This study was performed to find cellulolytic strain of enzymatic saccharification for bioethanol production. Cellulolytic strains were isolated from 59 different feces of herbivores from Seoul Grand Park located in Gwacheon Gyeonggi-Do. The celluloytic strain was selected by congo red staining and DNS method. Among the isolated strains, H9-1 strain isolated from the feces of rabbit has the highest CMCase activity. H9-1 strain was identified as Bacillus sp. based on 16S rDNA gene sequencing. The optimal conditions for CMCase activity by Bacillus sp. H9-1 were at $40^{\circ}C$ and at initial pH 8.

Purification and Characterization of an Alkaline Protease Produced by Alkalophilic Bacillus sp. DK1122 (호알칼리성 Bacillus sp. DK1122 균주가 생산하는 알칼리성 단백질 분해효소의 정제 및 특성)

  • Lee, Hyungjae;Yoo, Ji-Seung;Bai, Dong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.333-340
    • /
    • 2016
  • An alkaline protease was purified and characterized from an alkalophilic microorganism, Bacillus sp. DK1122, isolated from soil in central Korea. The optimum temperature and pH for the growth of the producer strain were 40℃ and pH 9.0, respectively. The protease was produced aerobically at 40℃ after 24 h incubation in modified Horikoshi I medium (pH 9.0) containing 0.5% (w/v) glucose, 0.8% (w/v) yeast extract, 0.5% (w/v) polypeptone, 0.1% (w/v) K2HPO4, 0.02% (w/v) MgSO4·7H2O, 1% (w/v) Na2CO3, and 3% (w/v) NaCl. The alkaline protease was purified by 70% ammonium sulfate precipitation of the culture supernatant of Bacillus sp. DK1122, followed by CM-Sepharose chromatography. The molecular weight of the enzyme was estimated to be 27 kDa on the basis of SDS-PAGE. The optimum temperature and pH for the protease activity were 60℃ and pH 9.0, respectively. Addition of CaCl2 increased the thermal stability of the purified protease, where 90% of protease activity was retained at 60℃ for up to 3 h. Consequently, it is expected that the alkaline protease from this study, exhibiting stability at pH 7–9 and 60℃, may be promising for application in the food and detergent industries.

Production of Cyclodextrin Glucanotransferase from Alkalophilic Bacillus sp. C-21 (호알칼리성 Bacillus sp. C-21에 의한 Cyclodextrin Glucanotransferase의 생산)

  • Gang, Hui-Jeong;Chae, Gi-Su
    • The Korean Journal of Food And Nutrition
    • /
    • v.8 no.3
    • /
    • pp.253-261
    • /
    • 1995
  • A strain of alkalophilic Bacillus sp. C-21 has been Isolated from sold. The strain was capable of producing large amount of cyclodextrin glycosyltransferase (CGTase) in the high alkaline pH medium. The preferable medium composition was determined to be as follows : 1.0% soluble starch, 1.0% peptone, 0.5% yeast extract, 0.1% K2HP04, 0.02% MgSO4.7H2O and 1.0% Na2CO3(pH 10.0) The highest enzyme production was observed after 30hours of cultivation at 33$^{\circ}C$. The optimum temperature and pH for the activity of crude enzyme were 6$0^{\circ}C$ and 6.0, respectively. The enzyme was stable between pH 6.0 and 9.6, and up to 55$^{\circ}C$.

  • PDF

Isolation and Characterization of Cyclodextrin Glycosyl Transferase Producing Alkalophilic Bacillus sp. (Cyclodextrin glycosyltransferase를 생산하는 호알칼리성 Bacillus속 미생물)

  • 유주현;정용준;이정수
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.2
    • /
    • pp.148-153
    • /
    • 1989
  • A strain of alkalophilic Bacillus sp. YC-335 has been isolated from soil. The strain was capable of producing large amount of cyclodextrin glycosyl transferase (CGTase) in the culture broth. The preferable medium composition has been determined to be as follows : 1.5% soluble starch, 5% corn steep liquor, 0.1% $K_2$HPO$_4$, 0.02%mgSO$_4$.7$H_2O$, 1% CaCO$_3$and 1% Na$_2$CO$_3$(pH 10.3). The highest enzyme production was observed after 48 hours of cultivation at 31$^{\circ}C$. The optimum pH and temperature for the activity of crude enzyme were 6.0 and 5$0^{\circ}C$, respectively. The enzyme was stable between pH 5 and 9, and upto 5$0^{\circ}C$. The enzyme converted starch into $\alpha$-, $\beta$- and ${\gamma}$-CD in the relative amounts of 1:10:1.5, respectively.

  • PDF

Production of $\beta$-Galactosidase from Alkalophilic Bacillus sp. (II) (호알카리성 Bacillus sp.로부터 $\beta$-Galactosidase의 생산(II))

  • 유주현;윤성식
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.524-528
    • /
    • 1989
  • A $\beta$-Galactosidase producing strain, Alkalophilic Bacillus sp, YS-309, has been isolated from soil sample. The strain was capable of producing large amount of intracellular $\beta$-galactosidase in the alkaline media rather than in the neutral media. The preferable medium composition has been determined to be as follows: 0.5% lactose, 0.5% yeast extract, 0.5% soybean meal, 0.1% KH$_2$PO$_4$, 0.02% MgSO$_4$7$H_2O$ 0,0.6% Na$_2$CO$_3$ (pH 9.9). The enzyme was produced by lactose or IPTG as in-ducer. But both Enzyme synthesis and cellular growth were decreased when lactose was added at the higher concentrations than 1.5% (v/v).

  • PDF