• 제목/요약/키워드: Bacillus cereus KCTC 3674

검색결과 9건 처리시간 0.035초

Beta hemolysis 유발 병원균 Bacillus cereus의 HQNO-sensitive NADH:DCIP oxidoreductase (HQNO-sensitive NADH:DCIP Oxidoreductase of a Pathogenic Bacillus cereus Causing β-Hemolysis)

  • 김영재;박기태
    • 생명과학회지
    • /
    • 제16권3호
    • /
    • pp.505-509
    • /
    • 2006
  • 호기적으로 자란 Bacillus cereus KCTC 3674로 부터 조제된 막은 NADH만을 산화하고, deamino-NADH는 거의 산화하지 않았다. 호흡쇄와 연계된 NADH oxidase계는 $K_m$ 값이 약 $65\;{\mu}M$ 이였다. NADH:DCIP oxidoreductase의 활성은 $Na^+$또는 $K^+$에 의해 감소되었다. 그 최적 pH는 5.5 였다. NADH:DCIP oxidoreductase의 활성은 rotenone, capsaicin, $AgNO_3$와 같은 호흡저해제에는 매우 저항적 이 였지만, $40{\mu}M$ HQNO (2-heptyl-4-hydroxyquinoline-N-oxide) 존재하에서는 약 40% 저해되었다. 이들 결과로 부터, Bacillus cereus KCTC 3674의 호기적 호흡쇄와 연계된 NADH oxidase계는 energy coupling site가 결여된 HQNO-sensitive NADH:DCIP oxidoreductase를 소유하고 있는 것으로 추정된다.

HQNO-sensitive NADH:Quinone Oxidoreductase of Bacillus cereus KCTC 3674

  • Kang, Ji-Won;Kim, Young-Jae
    • BMB Reports
    • /
    • 제40권1호
    • /
    • pp.53-57
    • /
    • 2007
  • The enzymatic properties of NADH:quinone oxidoreductase were examined in Triton X-100 extracts of Bacillus cereus membranes by using the artificial electron acceptors ubiquinone-1 and menadione. Membranes were prepared from B. cereus KCTC 3674 grown aerobically on a complex medium and oxidized with NADH exclusively, whereas deamino-NADH was determined to be poorly oxidized. The NADH oxidase activity was lost completely by solubilization of the membranes with Triton X-100. However, by using the artificial electron acceptors ubiquinone-1 and menadione, NADH oxidation could be observed. The activities of NADH:ubiquinone-1 and NADH:menadione oxidoreductase were enhanced approximately 8-fold and 4-fold, respectively, from the Triton X-100 extracted membranes. The maximum activity of FAD-dependent NADH:ubiquinone-1 oxidoreductase was obtained at about pH 6.0 in the presence of 0.1M NaCl, while the maximum activity of FAD-dependent NADH:menadione oxidoreductase was obtained at about pH 8.0 in the presence of 0.1M NaCl. The activities of the NADH:ubiquinone-1 and NADH:menadione oxidoreductase were very resistant to such respiratory chain inhibitors as rotenone, capsaicin, and $AgNO_3$, whereas these activities were sensitive to 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Based on these results, we suggest that the aerobic respiratory chain-linked NADH oxidase system of B. cereus KCTC 3674 possesses an HQNO-sensitive NADH:quinone oxidoreductase that lacks an energy coupling site containing FAD as a cofactor.

Enzymatic Properties of the Membrane-bound NADH Oxidase System in the Aerobic Respiratory Chain of Bacillus cereus

  • Kim, Man-Suk;Kim, Young-Jae
    • BMB Reports
    • /
    • 제37권6호
    • /
    • pp.753-756
    • /
    • 2004
  • Membranes prepared from Bacillus cereus KCTC 3674, grown aerobically on a complex medium, oxidized NADH exclusively, whereas deamino-NADH was little oxidized. The respiratory chain-linked NADH oxidase exhibited an apparent $K_m$ value of approximately $65\;{\mu}m$ for NADH. The maximum activity of the NADH oxidase was obtained at about pH 8.5 in the presence of 0.1 M KCl (or NaCl). Respiratory chain inhibitor 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) inhibited the activity of the NADH oxidase by about 90% at a concentration of $40\;{\mu}m$. Interestingly, rotenone and capsaicin inhibited the activity of the NADH oxidase by about 60% at a concentration of $40\;{\mu}m$ and the activity was also highly sensitive to $Ag^+$.

Bacillus cereus의 호기적 호흡쇄에 있어서 세포질막 내에 존재하는 NADH;menadione oxidoreductase의 특성 (Properties of the Membrane-Bound NADH;Menadione Oxidoreductase in the Aerobic Respiratory Chain of Bacillus cereus)

  • 강지원;김영재
    • 생명과학회지
    • /
    • 제18권3호
    • /
    • pp.418-421
    • /
    • 2008
  • 호기적으로 자란 Bacillus cereus KCTC 3674로 부터 조제된 막은 NADH만을 산화하고, deamino-NADH는 거의 산화하지 않았다. 호홉쇄와 연계된 NADH oxidase계는 $K_m$ 값이 약 65 ${\mu}M$이였다. 한편, NADH oxidase계 중 NADH: menadione oxidoreductase의 효소학적 특성이 조사되었다. NADH: menadione oxidoreductase의 최고활성은 0.1 M KCl (또는 NaCl) 존재 하에서 pH 9.5에서 얻어졌다. NADH: menadione oxidoreductase의 활성은 rotenone, capsaicin, $AgN0_3$와 같은 호흡저해제에 매우 저항적이였다. 그러나 매우 흥미롭게도 NADH: menadione oxidoreductase의 활성은 HQNO (2-heptyl-4-hydroxyquinoline-N-oxide)와 같은 저해제에 의해서는 오히려 촉진되어 졌다.

Influence of Temperature, Oxygen, m-Chlorophenylhydrazone Cerulenin, and Quinacrine on the Production of Extracellular Proteases in Bacillus cereus

  • Kim, Sam-Sun;Park, Yong-Ha;Rhee, In-Koo;Kim, Young-Jae
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권1호
    • /
    • pp.103-106
    • /
    • 2000
  • Bacillus cereus KCTC 3674 excretes at least two kinds of extracellular proteases into the growth medium. Two major bands of the protease activity with molecular weights of approximately 100 and 38 kDa were obtained after gelatin-SDS-PAGE. The protease with a molecular weight of 38kDa was identified as an extracellular neutral (metallo-) protease. The neutral protease was quite thermostabile but labile to alkaline pH. On the contrary, the 100-kDa protease was thermolabile but stable to alkaline pH. The production of 38-kDa neutral protease was strongly affected by temperature, oxygen, carbonylcyanied m-chlorophenylhydrazone(CCCP) that was defined as a protonophofre, and cerulenin which inhibited lipid synthesis and caused changes in the membrane composition. On the other hand, the production of the 100-kDa protease was strongly affected by only temperature and cerulenin. Quinacrine (0.2 mM), which inhibits the penicillinase-releasing proteases of Bacillus licheniformis, had no effect, whatsoever, on the production of extracellular proteases in B.cereus KCTC 3674.

  • PDF