DOI QR코드

DOI QR Code

HQNO-sensitive NADH:DCIP Oxidoreductase of a Pathogenic Bacillus cereus Causing β-Hemolysis

Beta hemolysis 유발 병원균 Bacillus cereus의 HQNO-sensitive NADH:DCIP oxidoreductase

  • Kim Young-Jae (Department of Microbiology, Changwon National University) ;
  • Park Ki-Tae (Ki Tae Park Korean Medicine Clinic)
  • 김영재 (창원대학교 자연과학대학 미생물학과) ;
  • 박기태 (박기태 한의원)
  • Published : 2006.06.01

Abstract

Membranes prepared from Bacillus cereus KCTC 3674, grown aerobically on a complex medium, oxidized NADH exclusively, whereas deamino-NADH was little oxidized. The respiratory chain-linkedNADH oxidase system exhibited an apparent $K_m$ value of about $65\;{\mu}M$ for NADH. Interestingly, the activity of NADH:DCIP oxidoreductase on NADH oxidase system was decreased remarkably by $Na^+$ or $K^+$, and its optimal pH was 5.5. The activity of NADH:DCIP oxidoreductase was very resistant to the respiratory chain inhibitors such as rotenone, capsaicin, and $AgNO_3$, whereas it was inhibited by about 40% with $40{\mu}M$ 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). From the results, we suggest the possibility that the aerobic respiratory chain-linked NADH oxidase system of B. cereus KCTC 3674 may possess the HQNO-sensitive NADH:DCIP oxidoreductase lacking an energy coupling site.

호기적으로 자란 Bacillus cereus KCTC 3674로 부터 조제된 막은 NADH만을 산화하고, deamino-NADH는 거의 산화하지 않았다. 호흡쇄와 연계된 NADH oxidase계는 $K_m$ 값이 약 $65\;{\mu}M$ 이였다. NADH:DCIP oxidoreductase의 활성은 $Na^+$또는 $K^+$에 의해 감소되었다. 그 최적 pH는 5.5 였다. NADH:DCIP oxidoreductase의 활성은 rotenone, capsaicin, $AgNO_3$와 같은 호흡저해제에는 매우 저항적 이 였지만, $40{\mu}M$ HQNO (2-heptyl-4-hydroxyquinoline-N-oxide) 존재하에서는 약 40% 저해되었다. 이들 결과로 부터, Bacillus cereus KCTC 3674의 호기적 호흡쇄와 연계된 NADH oxidase계는 energy coupling site가 결여된 HQNO-sensitive NADH:DCIP oxidoreductase를 소유하고 있는 것으로 추정된다.

Keywords

References

  1. Asano, M., M. Hayashi, T. Unemoto and H. Tokuda. 1985. $Ag^+-sensitive$ NADH dehydrogenase in the $Na^+-motive$ respiratory chain of the marine bacterium Vibrio alginolyticus. Agric. Biol. Chem. (Biosci. Biotechnol. Biochem.) 49, 2813-2817
  2. Collins, M. D. and D. Jones. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45, 316-354
  3. Kim, S. S., Y. J. Kim and I. Rhee. 2001. Purification and characterization of anovel extracellular protease from Bacillus cereus KCTC 3674. Arch. Microbiol. 175, 458-461 https://doi.org/10.1007/s002030100282
  4. Kim, Y. J., S. Mizushima, and H. Tokuda. 1991. Fluorescence quenching studies on the characterization of energy generated at the NADH:quinone oxidoreductase and quinol oxidase segments of marine bacteria. J. Biochem. (Tokyo) 109, 616-621 https://doi.org/10.1093/oxfordjournals.jbchem.a123429
  5. Kim, S. S., Y. Park, J. Lee, J. Yoon, Y. Shin, I. Rhee and Y. J. Kim. 1998. Taxonomic studies of the beta hemolysis- causing pathogen Bacillus cereus isolated from sea water. J. Microbiol. Biotech. 8, 67-73
  6. Kim, S. S., Y. Park, I. Rhee and Y. J. Kim. 2000. Influence of temperature, oxygen, m-chlorophenylhydrazone, cerulenin, and quinacrine on the production of extracellular proteases in Bacillus cereus. J. Microbiol. Biotech. 10, 103-106
  7. Kim, Y. J., K. Song and S. Rhee. 1995. A novel aerobic respiratory chain-linked NADH oxidase system in Zymomonas mobilis. J. Bacteriol. 177, 5176-5178 https://doi.org/10.1128/jb.177.17.5176-5178.1995
  8. Matsushita K, T. Ohnishi and R. Kaback. 1987. NADH:ubiquinone oxidoreductase of the Escherichia coli aerobic respiratory chain. Biochemistry 26, 7732-7737 https://doi.org/10.1021/bi00398a029
  9. Tokuda, H. 1983. Isolation of Vibrio alginolyticus mutants defective in the respiration-coupled $Na^+$ pump. Biochem. Biophys. Res. Commun. 114, 113-118 https://doi.org/10.1016/0006-291X(83)91601-7
  10. Tokuda, H and T. Unemoto. 1984. $Na^+$ is translocated at NADH:quinone oxidoreductase segment in the respiratory chain of Vibrio alginolyticus. J. Biol. Chem. 259, 7785-7790
  11. Turnbull, P. C. B. 1986. Pharmacology of Bacterial Toxins (Dorner F and Drews J, eds). Pergamon Press, Oxford. 397-448
  12. Yagi T. 1990. Inhibition by capsaicin of NADH-quinone oxidoreductases is correlated with the presence of energy- coupling site 1 in various organisms. Arch. Biochem. Biophys. 281(2), 305-311 https://doi.org/10.1016/0003-9861(90)90448-8
  13. Yagi T, K. Hoh-nami and T. Ohnishi. 1998b. Purification and characterization of two types of NADH-quinone reductase from Thermus thermophilus HB-8. Biochemistry 27, 2008-2013 https://doi.org/10.1021/bi00406a030
  14. Yagi T, T. Yano, S. D. Bernardo, A. Matsuno-Yagi. 1998a. Procaryotic complex I (NDH-1), an overview. Biochim. Biophys. Acta. 1364, 125-133 https://doi.org/10.1016/S0005-2728(98)00023-1