Browse > Article
http://dx.doi.org/10.5352/JLS.2006.16.3.505

HQNO-sensitive NADH:DCIP Oxidoreductase of a Pathogenic Bacillus cereus Causing β-Hemolysis  

Kim Young-Jae (Department of Microbiology, Changwon National University)
Park Ki-Tae (Ki Tae Park Korean Medicine Clinic)
Publication Information
Journal of Life Science / v.16, no.3, 2006 , pp. 505-509 More about this Journal
Abstract
Membranes prepared from Bacillus cereus KCTC 3674, grown aerobically on a complex medium, oxidized NADH exclusively, whereas deamino-NADH was little oxidized. The respiratory chain-linkedNADH oxidase system exhibited an apparent $K_m$ value of about $65\;{\mu}M$ for NADH. Interestingly, the activity of NADH:DCIP oxidoreductase on NADH oxidase system was decreased remarkably by $Na^+$ or $K^+$, and its optimal pH was 5.5. The activity of NADH:DCIP oxidoreductase was very resistant to the respiratory chain inhibitors such as rotenone, capsaicin, and $AgNO_3$, whereas it was inhibited by about 40% with $40{\mu}M$ 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). From the results, we suggest the possibility that the aerobic respiratory chain-linked NADH oxidase system of B. cereus KCTC 3674 may possess the HQNO-sensitive NADH:DCIP oxidoreductase lacking an energy coupling site.
Keywords
Bacillus cereus KCTC 3674; aerobic respiratory chain; NADH:DCIP oxidoreductase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Asano, M., M. Hayashi, T. Unemoto and H. Tokuda. 1985. $Ag^+-sensitive$ NADH dehydrogenase in the $Na^+-motive$ respiratory chain of the marine bacterium Vibrio alginolyticus. Agric. Biol. Chem. (Biosci. Biotechnol. Biochem.) 49, 2813-2817
2 Kim, Y. J., K. Song and S. Rhee. 1995. A novel aerobic respiratory chain-linked NADH oxidase system in Zymomonas mobilis. J. Bacteriol. 177, 5176-5178   DOI
3 Yagi T, T. Yano, S. D. Bernardo, A. Matsuno-Yagi. 1998a. Procaryotic complex I (NDH-1), an overview. Biochim. Biophys. Acta. 1364, 125-133   DOI   ScienceOn
4 Tokuda, H. 1983. Isolation of Vibrio alginolyticus mutants defective in the respiration-coupled $Na^+$ pump. Biochem. Biophys. Res. Commun. 114, 113-118   DOI   ScienceOn
5 Yagi T, K. Hoh-nami and T. Ohnishi. 1998b. Purification and characterization of two types of NADH-quinone reductase from Thermus thermophilus HB-8. Biochemistry 27, 2008-2013   DOI
6 Tokuda, H and T. Unemoto. 1984. $Na^+$ is translocated at NADH:quinone oxidoreductase segment in the respiratory chain of Vibrio alginolyticus. J. Biol. Chem. 259, 7785-7790
7 Turnbull, P. C. B. 1986. Pharmacology of Bacterial Toxins (Dorner F and Drews J, eds). Pergamon Press, Oxford. 397-448
8 Yagi T. 1990. Inhibition by capsaicin of NADH-quinone oxidoreductases is correlated with the presence of energy- coupling site 1 in various organisms. Arch. Biochem. Biophys. 281(2), 305-311   DOI   ScienceOn
9 Kim, S. S., Y. Park, J. Lee, J. Yoon, Y. Shin, I. Rhee and Y. J. Kim. 1998. Taxonomic studies of the beta hemolysis- causing pathogen Bacillus cereus isolated from sea water. J. Microbiol. Biotech. 8, 67-73
10 Kim, S. S., Y. J. Kim and I. Rhee. 2001. Purification and characterization of anovel extracellular protease from Bacillus cereus KCTC 3674. Arch. Microbiol. 175, 458-461   DOI
11 Kim, S. S., Y. Park, I. Rhee and Y. J. Kim. 2000. Influence of temperature, oxygen, m-chlorophenylhydrazone, cerulenin, and quinacrine on the production of extracellular proteases in Bacillus cereus. J. Microbiol. Biotech. 10, 103-106
12 Matsushita K, T. Ohnishi and R. Kaback. 1987. NADH:ubiquinone oxidoreductase of the Escherichia coli aerobic respiratory chain. Biochemistry 26, 7732-7737   DOI   ScienceOn
13 Kim, Y. J., S. Mizushima, and H. Tokuda. 1991. Fluorescence quenching studies on the characterization of energy generated at the NADH:quinone oxidoreductase and quinol oxidase segments of marine bacteria. J. Biochem. (Tokyo) 109, 616-621   DOI
14 Collins, M. D. and D. Jones. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45, 316-354