- Note -

Properties of the Membrane-Bound NADH: Menadione Oxidoreductase in the Aerobic Respiratory Chain of *Bacillus cereus*

Jiwon Kang and Young Jae Kim*

Department of Microbiology, Changwon National University, Sarim-dong, Changwon, Kyungnam 641-773, Republic of Korea Received February 12, 2008 / Accepted March 16, 2008

Membranes prepared from *Bacillus cereus* KCTC 3674, grown aerobically on a complex medium, oxidized NADH exclusively, whereas deamino-NADH was little oxidized. The respiratory chain-linked NADH oxidase system exhibited an apparent K_m value of approximately 65 μ M for NADH. On the other hand, the enzymatic properties of the NADH: menadione oxidoreductase of NADH oxidase system were examined. The maximum activity of NADH: menadione oxidoreductase was obtained at pH 9.5 in the presence of 0.1 M KCl (or NaCl). The NADH: menadione oxidoreductase activity was very resistant to the respiratory chain inhibitors such as rotenone, capsaicin, and AgNO₃ Interestingly, the activity was stimulated by the 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO).

Key words: Bacillus cereus KCTC 3674, aerobic respiratory chain, NADH: menadione oxidoreductase

Introduction

Although the NADH dehydrogenases (NDH) in the bacterial respiratory chains are referred to as NADH:ubiquinone oxidoreductase, many bacteria have been known to possess quinones other than ubiquinone [2]. Thus, the name NADH: quinone oxidoreductase in bacteria seems more appropriate than NADH: ubiquinone oxidoreductase.

Three types of NADH: quinone oxidoreductases in the respiratory chain of bacteria have been reported [12]. They are the H⁺-translocating NADH: quinone oxidoreductase (designated NDH-1), the Na+translocating NADH: quinone oxidoreductase (designated Na⁺-NDH), and the NADH: quinone oxidoreductase lacking an energy coupling site (designated NDH-2). In general, NDH-1 or Na⁺-NDH reacts with deamino-NADH as well as with NADH, shows high affinities for NADH, and possesses an energy coupling site [6,8]. In contrast, NDH-2 reacts very little with deamino-NADH, but with NADH without any energy coupling site, and shows low affinities for NADH [6-8]. Escherichia coli [7], Vibrio alginolyticus [9,10], and Thermus thermophilus HB-8 [13] are known to possess two different types of NADH: quinone oxidoreductases. Zymomonas mobilis is known to possess only NADH: quinone oxidoreductase lacking the energy coupling site [7].

Respiratory chain inhibitors have proved to be a useful

*Corresponding author

Tel: +82-55-213-3484, Fax: +82-55-213-3480

E-mail: yjkim@changwon.ac.kr

tool for probing the mechanism of electron transfer and proton or sodium translocation in the respiratory chain. Generally, NDH-1 is inhibited by the respiratory inhibitors rotenone and capsaicin, whereas NDH-2 is only slightly inhibited by these inhibitors [11,12].

Interestingly, Na[†]-NDH is known to be very resistant to rotenone and capsaicin [12], but highly sensitive to 2-hep-tyl-4-hydroxyquinoline-*N*-oxide [10] and AgNO₃ [1].

Takao Yagi showed that the respiratory inhibitor capsaicin inhibited H⁺-translocating NADH: quinone oxidoreductases, and did not inhibit the NADH oxidase and NADH: quinone oxidoreductase of *Bacillus subtilis* [11]. To date, little detailed study has been done on the enzymatic and energetic properties of the aerobic respiratory chainlinked NADH oxidase system in the genus *Bacillus*. *Bacillus cereus* KCTC3674, which is a gram-positive facultative anaerobic spore-forming rod-shaped bacterium, is known to possess a menaquinone with seven isoprene units as the respiratory quinone [4]. I investigated the enzymatic properties of the NADH: menadione oxidoreductase on the aerobic respiratory chain-linked NADH oxidase system of *B. cereus* KCTC 3674, and report the results here.

Materials and methods

Bacterial strain and conditions

The bacterial strain used in this work was *B. cereus* KCTC 3674 [3-5]. The bacterium was grown aerobically at 37°C in a liquid medium which contained 0.5% poly-

peptone and 0.5% yeast extract in 50 mM Tris-HCl buffer (pH 7.5). Preculture grown overnight was used to inoculate the main culture to give a turbidity of approximately 0.03.

Preparation of membrane vesicles for the determination of respiratory activities

For the preparation of membrane vesicles from B. cereus KCTC 3674, the protoplast formation was carried out at 37°C. Cells harvested in logarithmic growth phase were suspended in 50 mM potassium phosphate (pH 7.5) containing 5 mM EDTA at a concentration of 1 g (wet weight) per 80 ml. Lysozyme was added at a concentration of 300 μg/ml (freshly prepared). The mixture was incubated for 30 min, after which the protoplasts were harvested by centrifugation at 14,000× g for 30 min. Protoplasts were washed once in 50 mM potassium phosphate (pH 7.5) containing 5 mM EDTA, and centrifuged at 14,000× g for 30 min at 4°C. Washed protoplasts were resuspended in 50 mM potassium phosphate (pH 7.5) containing 5 mM EDTA to give a concentration of 20 ml/g, and protoplast suspensions were passed through a French pressure cell twice at 25,000 psi. Unbroken cells and cell debris were removed by centrifugation at 10,000× g for 10 min at 4°C, and the supernatant was centrifuged at 120,000× g for 2 hr at 4°C to sediment the membrane fraction. A membrane pellet was washed in 50 mM potassium phosphate (pH 7.5) containing 5 mM EDTA. After sedimentation at 120,000× g for 2 hr at 4°C, inverted membrane vesicles were rewashed in 50 mM potassium phosphate (pH 7.5) containing 10% glycerol. Inverted membrane vesicles were resuspened in 50 mM potassium phosphate (pH 7.5) containing 10% glycerol at a protein concentration of about 25 mg/ml, and stored at -80°C.

Measurement of enzyme activities

The the NADH oxidase activity was measured at 37°C from a decrease in A_{340} by using varian Cary 3E spectrophotometer. The assay mixture of NADH oxidase contained 125 μ M NADH or deamino-NADH in 2 ml of 50 mM Tris-HCl (pH 8.5) containing 0.1 M KCl. The assay was started by addition of 200 μ g of membrane protein. Activity was calculated by using a millimolar extinction coefficient of 6.22. The assay mixture for NADH: menadione oxidoreductase contained 200 μ g of membrane protein, 30 mM KCN, and 150 μ M menadione in 2 ml of 50

mM CAPSO-HCl (pH 9.5). The reaction of the NADH: menadione oxidoreductase was started by the addition of 125 μ M NADH. The activity of NADH: menadione oxidoreductase was measured at 340 nm, and was calculated by using a millimolar extinction coefficient of 6.22.

Protein determination

Protein was measured by Bio-Rad protein assay, based on the method of Bradford, by using bovin serum albumin as a standard.

Results and Discussion

Enzymatic properties of the membrane-bound NADH oxidase

The effects of salts and pH on the NADH oxidase activity were examined with inverted membrane vesicles prepared from *B. cereus* KCTC 3674. As shown in Fig. 1, the membrane vesicles oxidized NADH (closed symbols), but very little deamino-NADH (open symbols) as a substrate. The rate of NADH oxidation was slightly activated by monovalent cations including Na⁺ and K⁺, but was little activated by Li⁺ (data not shown). The maximum activity of NADH oxidase was obtained in the presence of 0.1 M KCl or NaCl. The optimal pH for NADH oxidation in the presence of 0.1 M KCl was 8.5 (data not shown). The

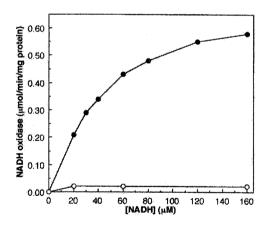


Fig. 1. Ability of NADH oxidase to oxidize NADH or deamino-NADH. The activities of NADH and deamino-NADH oxidases were measured in 2 ml of 50 mM Tris-HCl (pH 8.5) containing 0.1 M KCl and different concentrations of NADH (closed symbols) or deamino-NADH (open symbols). The assay was started by addition of membrane suspensions containing about 200 μg of protein at 37°C.

NADH oxidase exhibited an apparent K_m value of approximately 65 μ M for NADH. These results indicate that the aerobic respiratory chain-linked NADH oxidase system of *B. cereus* KCTC 3674 is the enzymatic system lacking an energy coupling site.

The effects of salts, pH, and respiratory inhibitors on of the NADH:menadione oxidoreductase activity

The NADH: menadione oxidoreductase activity was very slightly stimulated by Na⁺ and K⁺ at a concentration of 0.1 M (Fig. 2A). Its optimal pH was 9.5 (Fig. 2B). Interestingly, the respiratory inhibitor HQNO, which acts at the b cytochromes and also inhibits the Na⁺-translocating NADH: quinone oxidoreductase, stimulated the NADH: menadione oxidoreductase activity (Fig. 3A). However, the NADH: menadione oxidoreductase were very resistant to the respiratory chain inhibitors such as rotenone and capsaicin, which inhibit the energy-transducing NADH: quinone oxidoreductase (Fig. 3B and C).

Effect of Ag^+ on the enzyme activities of the NADH oxidase system

AgNO₃ is known to inhibit Na⁺-translocating NADH: quinone oxidoreductase [1]. As shown in Fig. 4, the membrane-bound NADH oxidase activity of *Bacillus cereus* KCTC 3674 was highly sensitive to Ag⁺ (closed squares). In

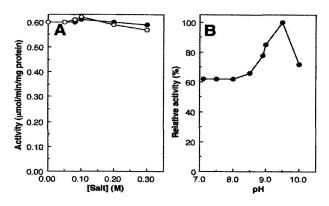


Fig. 2. Effects of salts and pH on the NADH: menadione oxidoreductase activity. (A) The assay mixture of NADH: menadione oxidoreductase (2 ml) contained 50 mM CAPSO-HCl (pH 9.5), 200 μg of membrane protein, 30 mM KCN, 150 μM menadione, and various concentrations of NaCl (closed circles), or KCl (open circles), (B) The NADH: menadione oxidoreductase activity was determined at various pHs. Buffers used at 50 mM was Tris-HCl (pH 7.1 to 8.9) and CAPSO-HCl (pH 9 to 10). All assays were started by addition of 125 μM NADH at 37°C.

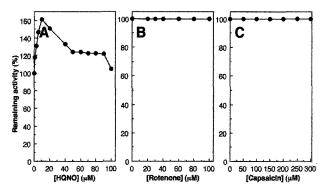


Fig. 3. Effects of respiratory chain inhibitors on the NADH: menadione oxidoreductase. The NADH: menadione oxidoreductase activity was measured with various concentrations of HQNO (A), rotenone (B), and capsaicin (C). The assay mixture of NADH: menadione oxidoreductase contained 200 μg of membrane protein, 30 mM KCN, 150 μM menadione in 2 ml of 50 mM CAPSO-HCl (pH 9.5) containing 0.1 M NaCl. All assays were started by addition of 125 μM NADH.

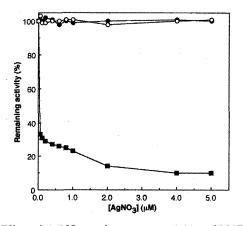


Fig. 4. Effect of $AgNO_3$ on the enzyme activities of NADH oxidase system. NADH oxidase (closed squares), NADH: ubiquinone-1 oxidoreductase (closed circles) and NADH: menadione oxidoreductase (open circles).

contrast, the activities of NADH: ubiquinone-1, and NADH: menadione oxidoreductases were not affected by Ag^{\dagger} at all. Thus, Ag^{\dagger} inhibits the quinol oxidase segment of *Bacillus cereus*3674, but not NADH: quinone oxidoreductase.

Acknowledgement

This work was financially supported by Changwon National University in 2007.

References

1. Asano, M., M. Hayashi, T. Unemoto and H. Tokuda. 1985.

- Ag⁺-sensitive NADH dehydrogenase in the Na⁺-motive respiratory chain of the marine bacterium *Vibrio alginolyticus*. *Agric. Biol. Chem. (Biosci. Biotechnol. Biochem.)* **49**, 2813-2817.
- 2. Collins, M. D. and D. Jones. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. *Microbiol. Rev.* 45, 316-354.
- 3. Kim, S. S., Y. J. Kim and I. Rhee. 2001. Purification and characterization of anovel extracellular protease from *Bacillus cereus* KCTC 3674. *Arch. Microbiol.* 175, 458-461.
- Kim, S. S., Y. Park, J. Lee, J. Yoon, Y. Shin, I. Rhee and Y. J. Kim. 1998. Taxonomic studies of the beta hemolysis-causing pathogen *Bacillus cereus* isolated from sea water. *J. Microbiol. Biotech.* 8, 67-73.
- Kim, S. S., Y. Park, I. Rhee, and Y. J. Kim. 2000. Influence of temperature, oxygen, m-chlorophenylhydrazone, cerulenin, and quinacrine on the production of extracellular proteases in Bacillus cereus. J. Microbiol. Biotech. 10, 103-106,
- Kim, Y. J., S. Mizushima and H. Tokuda. 1991. Fluorescence quenching studies on the characterization of energy generated at the NADH: quinone oxidoreductase and quinol oxidase segments of marine bacteria. J. Biochem. (Tokyo) 109, 616-621.
- 7. Kim, Y. J., K. Song and S. Rhee. 1995. A novel aerobic respi-

- ratory chain-linked NADH oxidase system in *Zymomonas mobilis. J. Bacteriol.* **177,** 5176-5178.
- 8. Matsushita, K., T. Ohnishi and R. Kaback. 1987. NADH: ubiquinone oxidoreductase of the Escherichia coli aerobic respiratory chain. *Biochemistry* **26**, 7732-7737.
- Tokuda, H. 1983. Isolation of Vibrio alginolyticus mutants defective in the respiration-coupled Na⁺ pump. Biochem. Biophys. Res. Commun. 114, 113-118.
- Tokuda, H. and T. Unemoto. 1984. Na⁺ is translocated at NADH: quinone oxidoreductase segment in the respiratory chain of *Vibrio alginolyticus*. J. Biol. Chem. 259, 7785-7790.
- 11. Yagi, T. 1990. Inhibition by capsaicin of NADH-quinone oxidoreductases is correlated with the presence of energy-coupling site 1 in various organisms. *Arch. Biochem. Biophys.* **281**, 305-311.
- 12. Yagi, T., T. Yano, S. D. Bernardo and A. Matsuno-Yagi. 1998. Procaryotic complex I (NDH-1), an overview. *Biochim. Biophys. Acta* **1364**, 125-133.
- Yagi, T., K. Hoh-nami and T. Ohnishi. 1988. Purification and characterization of two types of NADH-quinone reductase from *Thermus thermophilus* HB-8. *Biochemistry* 27, 2008-2013.

초록:Bacillus cereus의 호기적 호흡쇄에 있어서 세포질막 내에 존재하는 NADH: menadione oxidoreductase의 특성

강지원 · 김영재

(창원대학교 자연과학대학 미생물학과)

호기적으로 자란 Bacillus cereus KCTC 3674로 부터 조제된 막은 NADH만을 산화하고, deamino-NADH는 거의 산화하지 않았다. 호흡쇄와 연계된 NADH oxidase계는 K_m 값이 약 65 μM이였다. 한편, NADH oxidase계중 NADH: menadione oxidoreductase의 효소학적 특성이 조사되었다. NADH: menadione oxidoreductase의 최고활성은 0.1 M KCl (또는 NaCl) 존재 하에서 pH 9.5에서 얻어졌다. NADH: menadione oxidoreductase의 활성은 rotenone, capsaicin, AgNO₃와 같은 호흡저해제에 매우 저항적이였다. 그러나 매우 흥미롭게도 NADH: menadione oxidoreductase의 활성은 HQNO (2-heptyl-4-hydroxyquinoline-N-oxide)와 같은 저해제에 의해서는 오히려 촉진되어 졌다.