• Title/Summary/Keyword: BV-2 microglia cell

Search Result 86, Processing Time 0.029 seconds

Improving Effect to Connitive Ability of Cordyceps militaris Extract in PC12 and BV2 cells (PC12와 BV2 세포에서 동충하초 추출물의 인지능력 개선 효과)

  • Choi, Soon-Hee;Seung, O-Tak;Lee, Myung-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.468-478
    • /
    • 2019
  • The aim of this study is to evaluate the efficacy of cordyceps militaris extracts for the improvement of cognitive dysfunction in PC12 and BV2 cells. Cordyceps militaris extracts was prepared by extracting with distilled water. Cell viability was assessed by MTT assay using PC12 cells and BV2 cells. Confirmed effects of L-glutamate induced cytotoxicity test, Acetylcoline (ACh) concentration, and Acetylcolinestase (AChE) activity in PC12 cells. Anti-inflammatory activities of cordyceps militaris extracts was measured through changes in the levels of nitric oxide (NO), and prostaglandin E2 ($PGE_2$) on lipopolysaccharide(LPS)-induced BV2 cell. In addition, we measured the expression of $NF-{\kappa}B$, p38, JNK, and caspase-3 in western blot analysis. Cordyceps militaris extracts showed no cytotoxicity at the concentrations of 1, 10, and $100{\mu}g/m{\ell}$ except for the concentration of $200{\mu}g/m{\ell}$. Cordyceps militaris extracts protected the cell and exhibited significant increases in the ACh concentration and a significant decrease in the AChE activity in L-glutamate induced PC12 cells. Moreover, cordyceps militaris extracts inhibited the productions NO, and PGE2 level and the protein expression of $NF-{\kappa}B$, p38, JNK, caspase-3 in LPS-induced BV2 cells. These results indicate that cordyceps militaris extracts possible prevented and improved cognitive dysfuction symptoms. Thus, cordyceps militaris extracts may be a novel natural material option for the improvement of cognitive dysfunction.

Protective Effect of Luteolin against β-Amyloid-induced Cell Death and Damage in BV-2 Microglial Cells (베타아밀로이드로 유도된 신경소교세포 사멸에 대한 루테올린의 보호효과 연구)

  • Park, Gyu Hwan;Jang, Jung-Hee
    • The Korea Journal of Herbology
    • /
    • v.28 no.6
    • /
    • pp.79-86
    • /
    • 2013
  • Objectives : The purpose of this study is to investigate neuroprotective effects and molecular mechanisms of luteolin against ${\beta}$-amyloid ($A{\beta}_{25-35}$)-induced oxidative cell death in BV-2 cells. Methods : The protective effects of luteolin against $A{\beta}_{25-35}$-induced cytotoxicity and apoptotic cell death were determined by MTT dye reduction assay and TUNEL staining, respectively. The apoptotic cell death was further analyzed by measuring mitochondrial transmembrane potential and expression of pro- and/or anti-apoptotic proteins. To elucidate the molecular mechanisms underlying the protective effects of luteolin, intracellular accumulation of reactive oxygen species, oxidative damages, and expression of antioxidant enzymes were examined. Results : Luteolin pretreatment effectively attenuated $A{\beta}_{25-35}$-induced apoptotic cell death indices such as DNA fragmentation, dissipation of mitochondrial transmembrane potential, increased Bax/Bcl-2 ratio, and activation of c-Jun N-terminal kinase and caspase-3 in BV-2 cells. Furthermore, $A{\beta}_{25-35}$-induced intracellular formation of reactive oxygen species and subsequent oxidative damages such as lipid peroxidation and depletion of endogenous antioxidant glutathione were suppressed by luteolin treatment. The neuroprotective effects of luteolin might be mediated by up-regulation of cellular antioxidant defense system via up-regulation of ${\gamma}$-glutamylcysteine ligase, a rate-limiting enzyme in the glutathione biosynthesis and superoxide dismutase, an enzyme involved in dismutation of superoxide anion into oxygen and hydrogen peroxide. Conclusions : These findings suggest that luteolin has a potential to protect against $A{\beta}_{25-35}$-induced neuronal cell death and damages thereby exhibiting therapeutic utilization for the prevention and/or treatment of Alzheimer's disease.

Ipomoea aquatic Extracts (IAE) Attenuated Microglial Inflammation via Nrf2 Signaling (공심채 추출물(IAE)의 LPS로 유도된 미세아교세포에서의 Nrf2기전을 통한 항염증 효과)

  • Jiwon Choi;Sang Yoon Choi;Jinyoung Hur
    • Journal of the Korean Society of Food Culture
    • /
    • v.38 no.5
    • /
    • pp.365-372
    • /
    • 2023
  • Ipomoea aquatic is a leafy vegetable of the Convolvulaceae family, and is a tropical plant widely inhabiting southern China and Southeast Asia, and is widely known as Morning Glory in the West. In this study, the anti-inflammatory effects of ethyl acetate extract from Ipomoea aquatic extracts (IAE) were tested against lipopolysaccharide (LPS)-induced activation microglia BV2 cells. The production of nitric oxide (NO) and cell viability were measured using the Griess reagent and MTT assay, respectively. Inflammatory cytokine [interleukin (IL)-6, tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β)] were detected qPCR in LPS induced BV-2 cells. Subsequently, nuclear factor (NF)-κB, mitogen-activated protein kinases (MAPKs), and nuclear factor erythroid-2-related factor 2 (Nrf2) were analyzed through western blot analyses and immunofluorescence. Ipomoea aquatic down-regulated of inflammatory markers and up-regulated anti-inflammatory and anti-oxidants in BV2 cells.

Protective effects of Jinnoe-san, a novel herbal formula in experimental in vitro models of Parkinson's disease (파킨슨병의 세포모델에서 진뇌산(鎭腦散)의 보호효과)

  • Han, Sangtae;Jeong, Ji Cheon
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.537-551
    • /
    • 2017
  • Objectives : Jinnoe-san (JNS) is a novel herbal formula consisting of five oriental medicinal herbs including Polygalae Radix, Prunellae Spica, Perillae Herba, Betulae Cortex, and Lonicerae Flos. In this study, we investigated the effects and molecular mechanism of JNS on Parkinson's disease in vitro model. Methods : The effects of JNS on 1-methyl-4-phenylpyridinium ($MPP^+$)-induced cell death in SH-SY5Y cells were evaluated with a cell viability assay, flow cytometry, and western blots analysis. The effects of JNS on lipopolysaccharide (LPS)-stimulated BV2 microglia were determined with a nitric oxide (NO) assay, enzyme linked immunosorbent assays, and western blots analysis. Result : $MPP^+$-induced cell death in SH-SY5Y cells was significantly reduced by JNS pre-treatment in a dose-dependent manner. JNS inhibited the production of reactive oxygen species, mitochondria dysfunction, and apoptosis induced by $MPP^+$ in SH-SY5Y cells. Furthermore, JNS significantly activated Akt and ERK in SH-SY5Y cells and the ability of JNS to prevent mitochondria dysfunction by $MPP^+$ was antagonized by pre-treatment of LY294002 and PD98059, an Akt and ERK inhibitor, respectively. In addition, JNS inhibited LPS-induced NO and $PGE_2$ production as well as iNOS expression and secretion of TNF-${\alpha}$, pro-inflammatory cytokines without affecting the cell viability. JNS also suppressed LPS-induced ERK activation. Conclusions : These results demonstrate that JNS has a protective effect on the dopaminergic neurons against $MPP^+$-induced neurotoxicity and anti-inflammatory effect on the LPS-stimulated microglia. These findings provide evidences for JNS to be considered as a new prescription for treating Parkinson's disease.

Synthetic Wogonin Derivatives Suppress Lipopolysaccharide-Induced Nitric Oxide Production and Hydrogen Peroxide-Induced Cytotoxicity

  • Chun Wanjoo;Lee Hee Jae;Kong Pil-Jae;Lee Gun Hee;Cheong Il-Young;Park Haeil;Kim Sung-Soo
    • Archives of Pharmacal Research
    • /
    • v.28 no.2
    • /
    • pp.216-219
    • /
    • 2005
  • Wogonin (5,7-dihydroxy-8-methoxyflavone) has been reported to exhibit a variety of biological properties including anti-inflammatory and neuroprotective functions. In this study, biological activities of diverse synthetic wogonin derivatives have been evaluated in two experimental cell culture models. Inhibitory activities of wogonin derivatives on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV2 microglial cells and on hydrogen peroxide ($H_{2}O_2$)-induced neuronal cell death in SH-SY5Y human neuroblastoma were examined. Wogonin derivatives such as WS2 and WS3 showed more potent suppressive activities on LPS-induced NO production and $H_{2}O_2$-induced cytotoxicity than wogonin itself. In addition, thiol substitution played a minor role in enhancing the activities of the derivatives. These findings may contribute to the development of novel anti-inflammatory and neuroprotective agents derived from wogonin.

Efonidipine Inhibits JNK and NF-κB Pathway to Attenuate Inflammation and Cell Migration Induced by Lipopolysaccharide in Microglial Cells

  • Nguyen, Ngoc Minh;Duong, Men Thi Hoai;Nguyen, Phuong Linh;Bui, Bich Phuong;Ahn, Hee-Chul;Cho, Jungsook
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.455-464
    • /
    • 2022
  • Efonidipine, a calcium channel blocker, is widely used for the treatment of hypertension and cardiovascular diseases. In our preliminary study using structure-based virtual screening, efonidipine was identified as a potential inhibitor of c-Jun N-terminal kinase 3 (JNK3). Although its antihypertensive effect is widely known, the role of efonidipine in the central nervous system has remained elusive. The present study investigated the effects of efonidipine on the inflammation and cell migration induced by lipopolysaccharide (LPS) using murine BV2 and human HMC3 microglial cell lines and elucidated signaling molecules mediating its effects. We found that the phosphorylations of JNK and its downstream molecule c-Jun in LPS-treated BV2 cells were declined by efonidipine, confirming the finding from virtual screening. In addition, efonidipine inhibited the LPS-induced production of pro-inflammatory factors, including interleukin-1β (IL-1β) and nitric oxide. Similarly, the IL-1β production in LPS-treated HMC3 cells was also inhibited by efonidipine. Efonidipine markedly impeded cell migration stimulated by LPS in both cells. Furthermore, it inhibited the phosphorylation of inhibitor kappa B, thereby suppressing nuclear translocation of nuclear factor-κB (NF-κB) in LPS-treated BV2 cells. Taken together, efonidipine exerts anti-inflammatory and anti-migratory effects in LPS-treated microglial cells through inhibition of the JNK/NF-κB pathway. These findings imply that efonidipine may be a potential candidate for drug repositioning, with beneficial impacts on brain disorders associated with neuroinflammation.

Potential Role of Ursodeoxycholic Acid in Suppression of Nuclear Factor Kappa B in Microglial Cell Line (BV-2)

  • Joo, Seong-Soo;Won, Tae-Joan;Lee, Do-Ik
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.954-960
    • /
    • 2004
  • Expression of the NF-$textsc{k}$B-dependent genes responsible for inflammation, such as TNF-$\alpha$, IL-1$\beta$, and nitric oxide synthase (NOS), contributes to chronic inflammation which is a major cause of neurodegenerative diseases (i.e. Alzheimer's disease). Although NF-$textsc{k}$B plays a biphasic role in different cells like neurons and microglia, controlling the activation of NF-$textsc{k}$B is important for its negative feedback in either activation or inactivation. In this study, we found that ursodeoxycholic acid (UDCA) inhibited I$textsc{k}$B$\alpha$ degradation to block expression of the NF-$textsc{k}$B-dependent genes in microglia when activated by $\beta$-amyloid peptide (A$\beta$). We also showed that when microglia is activated by $A\beta$42, the expression of A20 is suppressed. These findings place A20 in the category of ' protective ' genes, protecting cells from pro-inflammatory reper-toires induced in response to inflammatory stimuli in activated microglia via NF-$textsc{k}$B activation. In light of the gene and proteins for NF-$textsc{k}$B-dependent gene and inactivator for NF-$textsc{k}$B (I$textsc{k}$B$\alpha$), the observations now reported suggest that UDCA plays a role in supporting the attenuation of the production of pro-inflammatory cytokines and NO via inactivation of NF-$textsc{k}$B. Moreover, an NF-$textsc{k}$B inhibitor such as A20 can collaborate and at least enhance the anti-inflammatory effect in microglia, thus giving a potent benefit for the treatment of neurodegenerative diseases such as AD.uch as AD.

Inhibitory Effect of Protaetiamycine 6 on Neuroinflammation in LPS-stimulated BV-2 Microglia (LPS에 의해 활성화된 미세아교세포에서 흰점박이꽃무지 유래 항균 펩타이드 Protaetiamycine 6의 신경염증 억제 효과)

  • Lee, Hwa Jeong;Seo, Minchul;Baek, Minhee;Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1078-1084
    • /
    • 2020
  • Protaetia brevitarsis seulensis is an insect belonging to the order Coleoptera. This insect is reported to contain large amounts of physiologically active substances useful for liver protective effect and improvements in blood circulation as well as a broad source of edible protein. Antimicrobial peptides (AMPs) are found in a variety of species, from microorganisms to mammals, and play an important role in the innate immune systems of living things. Microglia are the main source of proinflammatory cytokines and nitric oxide (NO) in the central nervous system. Activated microglia secrete large amounts of neuroinflammatory mediators (e.g., TNF-α, NO, and ROS), which are the main cause of neuronal cell death. In the present study, we investigated the inhibitory effect of Protaetiamycine 6 (PKARKLQKLSAYKTTLRN-NH2), an AMP derived from Protaetia brevitarsis seulensis, on LPS-induced neuroinflammation in BV-2 microglia. Protaetiamycine 6 significantly inhibited NO production without cytotoxicity and decreased the expression levels of inducible NO synthase and cyclooxygenase-2. In addition, Protaetiamycine 6 also reduced the production of neuroinflammatory cytokines on activated BV-2 microglia. These results suggest that Protaetiamycine 6 could be a good source of functional substance to prevent neuroinflammation and neurodegenerative diseases.

Gintonin, a Panax ginseng-derived LPA receptor ligand, attenuates kainic acid-induced seizures and neuronal cell death in the hippocampus via anti-inflammatory and anti-oxidant activities

  • Jong Hee Choi;Tae Woo Kwon;Hyo Sung Jo;Yujeong Ha;Ik-Hyun Cho
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.390-399
    • /
    • 2023
  • Background: Gintonin (GT), a Panax ginseng-derived lysophosphatidic acid receptor (LPAR) ligand, has positive effects in cultured or animal models for Parkinson's disease, Huntington's disease, and so on. However, the potential therapeutic value of GT in treating epilepsy has not yet been reported. Methods: Effects of GT on epileptic seizure (seizure) in kainic acid [KA, 55mg/kg, intraperitoneal (i.p.)]-induced model of mice, excitotoxic (hippocampal) cell death in KA [0.2 ㎍, intracerebroventricular (i.c.v.)]-induced model of mice, and levels of proinflammatory mediators in lipopolysaccharide (LPS)-induced BV2 cells were investigated. Results: An i.p. injection of KA into mice produced typical seizure. However, it was significantly alleviated by oral administration of GT in a dose-dependent manner. An i.c.v. injection of KA produced typical hippocampal cell death, whereas it was significantly ameliorated by administration of GT, which was related to reduced levels of neuroglial (microglia and astrocyte) activation and proinflammatory cytokines/enzymes expression as well as increased level of the Nrf2-antioxidant response via the upregulation of LPAR 1/3 in the hippocampus. However, these positive effects of GT were neutralized by an i.p. injection of Ki16425, an antagonist of LPA1-3. GT also reduced protein expression level of inducible nitric-oxide synthase, a representative proinflammatory enzyme, in LPS-induced BV2 cells. Treatment with conditioned medium clearly reduced cultured HT-22 cell death. Conclusion: Taken together, these results suggest that GT may suppress KA-induced seizures and excitotoxic events in the hippocampus through its anti-inflammatory and antioxidant activities by activating LPA signaling. Thus, GT has a therapeutic potential to treat epilepsy.

Comparative Study of Anti-oxidant and Anti-inflammatory Activities between Curcumae longae Radix and Curcumae longae Rhizoma (울금과 강황의 항산화 및 항염증 활성 비교연구)

  • Oh, Hye-In;Park, Han-Byeol;Ju, Mi-Sun;Jung, Sun-Yong;Oh, Myung-Sook
    • The Korea Journal of Herbology
    • /
    • v.25 no.1
    • /
    • pp.83-91
    • /
    • 2010
  • Objectives : In this study, we compared the anti-oxidant and anti-inflammatory activities of Curcumae longae Radix (CLRa) and Curcumae longae Rhizoma (CLRh). Methods : We performed 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) cation scavenging assays, and determined total polyphenolic content to examine the anti-oxidant effects of CLRa and CLRh. We also evaluated the anti-oxidant effects of CLRa and CLRh against hydrogen peroxide ($H_2O_2$)-induced toxicity in PC12 cells using thiazolyl blue tetrazolium bromide (MTT) and reactive oxygen species (ROS) assays. Next, to compare the anti-inflammatory effects of CLRa and CLRh against lipopolysaccharide (LPS)-induced inflammation in microglia BV2 cells, we measured nitric oxide (NO) assay and inducible nitrite synthase (iNOS) using Western blotting analysis. Results : CLRa showed higher activity in DPPH and ABTS assays and lower total polyphenolic contents compared with CLRh. In PC12 cells, CLRa and CLRh showed no difference in H2O2-induced cell toxicity and ROS overproduction. In BV2 cells, CLRa showed higher effect than CLRh in NO and iNOS production induced by LPS. Conclusions : These results demonstrate that CLRa has higher radical scavenging activities and anti-inflammatory effect in BV2 cells comparing CLRh. However, CLRa and CLRh have no effect and no difference in $H_2O_2$-induced toxicity.