DOI QR코드

DOI QR Code

Gintonin, a Panax ginseng-derived LPA receptor ligand, attenuates kainic acid-induced seizures and neuronal cell death in the hippocampus via anti-inflammatory and anti-oxidant activities

  • Jong Hee Choi (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University) ;
  • Tae Woo Kwon (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University) ;
  • Hyo Sung Jo (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University) ;
  • Yujeong Ha (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University) ;
  • Ik-Hyun Cho (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University)
  • Received : 2022.07.01
  • Accepted : 2022.11.03
  • Published : 2023.05.01

Abstract

Background: Gintonin (GT), a Panax ginseng-derived lysophosphatidic acid receptor (LPAR) ligand, has positive effects in cultured or animal models for Parkinson's disease, Huntington's disease, and so on. However, the potential therapeutic value of GT in treating epilepsy has not yet been reported. Methods: Effects of GT on epileptic seizure (seizure) in kainic acid [KA, 55mg/kg, intraperitoneal (i.p.)]-induced model of mice, excitotoxic (hippocampal) cell death in KA [0.2 ㎍, intracerebroventricular (i.c.v.)]-induced model of mice, and levels of proinflammatory mediators in lipopolysaccharide (LPS)-induced BV2 cells were investigated. Results: An i.p. injection of KA into mice produced typical seizure. However, it was significantly alleviated by oral administration of GT in a dose-dependent manner. An i.c.v. injection of KA produced typical hippocampal cell death, whereas it was significantly ameliorated by administration of GT, which was related to reduced levels of neuroglial (microglia and astrocyte) activation and proinflammatory cytokines/enzymes expression as well as increased level of the Nrf2-antioxidant response via the upregulation of LPAR 1/3 in the hippocampus. However, these positive effects of GT were neutralized by an i.p. injection of Ki16425, an antagonist of LPA1-3. GT also reduced protein expression level of inducible nitric-oxide synthase, a representative proinflammatory enzyme, in LPS-induced BV2 cells. Treatment with conditioned medium clearly reduced cultured HT-22 cell death. Conclusion: Taken together, these results suggest that GT may suppress KA-induced seizures and excitotoxic events in the hippocampus through its anti-inflammatory and antioxidant activities by activating LPA signaling. Thus, GT has a therapeutic potential to treat epilepsy.

Keywords

Acknowledgement

We would like to express my deepest appreciation to professor Seung Yeol Nah (Konkuk University, Seoul, Republic of Korea) for providing GT for this study.

References

  1. Vezzani A, Aronica E, Mazarati A, Pittman QJ. Epilepsy and brain inflammation. Exp Neurol 2013;244:11-21.  https://doi.org/10.1016/j.expneurol.2011.09.033
  2. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci 2013;36:174-84.  https://doi.org/10.1016/j.tins.2012.11.008
  3. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol 2011;7:31-40.  https://doi.org/10.1038/nrneurol.2010.178
  4. Borowicz-Reutt KK, Czuczwar SJ. Role of oxidative stress in epileptogenesis and potential implications for therapy. Pharmacol Rep 2020;72:1218-26.  https://doi.org/10.1007/s43440-020-00143-w
  5. Sankar R, Holmes GL. Mechanisms of action for the commonly used antiepileptic drugs: relevance to antiepileptic drug-associated neurobehavioral adverse effects. J Child Neurol 2004;19(Suppl 1):S6-14.  https://doi.org/10.1177/088307380401900102
  6. Yung YC, Stoddard NC, Mirendil H, Chun J. Lysophosphatidic Acid signaling in the nervous system. Neuron 2015;85:669-82.  https://doi.org/10.1016/j.neuron.2015.01.009
  7. Valcarcel-Martin R, Martin-Suarez S, Muro-Garcia T, Pastor-Alonso O, Rodriguez de Fonseca F, Estivill-Torrus G, Encinas JM. Corrigendum: lysophosphatidic acid receptor 1 specifically labels seizure-induced hippocampal reactive neural stem cells and regulates their division. Front Neurosci 2020;14:614857. 
  8. Estivill-Torrus G, Llebrez-Zayas P, Matas-Rico E, Santin L, Pedraza C, De Diego I, Del Arco I, Fernandez-Llebrez P, Chun J, De Fonseca FR. Absence of LPA1 signaling results in defective cortical development. Cereb Cortex 2008;18:938-50.  https://doi.org/10.1093/cercor/bhm132
  9. Matas-Rico E, Garcia-Diaz B, Llebrez-Zayas P, Lopez-Barroso D, Santin L, Pedraza C, Smith-Fernandez A, Fernandez-Llebrez P, Tellez T, Redondo M, et al. Deletion of lysophosphatidic acid receptor LPA1 reduces neurogenesis in the mouse dentate gyrus. Mol Cell Neurosci 2008;39:342-55.  https://doi.org/10.1016/j.mcn.2008.07.014
  10. Trimbuch T, Beed P, Vogt J, Schuchmann S, Maier N, Kintscher M, Breustedt J, Schuelke M, Streu N, Kieselmann O, et al. Synaptic PRG-1 modulates excitatory transmission via lipid phosphate-mediated signaling. Cell 2009;138:1222-35.  https://doi.org/10.1016/j.cell.2009.06.050
  11. Choi JH, Oh J, Lee MJ, Bae H, Ko SG, Nah SY, Cho IH. Inhibition of lysophosphatidic acid receptor 1-3 deteriorates experimental autoimmune encephalomyelitis by inducing oxidative stress. J Neuroinflammation 2021;18:240. 
  12. Pyo MK, Choi SH, Shin TJ, Hwang SH, Lee BH, Kang J, Kim HJ, Lee SH, Nah SY. A simple method for the preparation of crude gintonin from ginseng root, stem, and leaf. J Ginseng Res 2011;35:209-18.  https://doi.org/10.5142/jgr.2011.35.2.209
  13. Choi SH, Hong MK, Kim HJ, Ryoo N, Rhim H, Nah SY, Kang LW. Structure of ginseng major latex-like protein 151 and its proposed lysophosphatidic acid-binding mechanism. Acta Crystallogr D Biol Crystallogr 2015;71:1039-50.  https://doi.org/10.1107/S139900471500259X
  14. Choi SH, Jung SW, Lee BH, Kim HJ, Hwang SH, Kim HK, Nah SY. Ginseng pharmacology: a new paradigm based on gintonin-lysophosphatidic acid receptor interactions. Front Pharmacol 2015;6:245. 
  15. Nah SY. Gintonin: a novel ginseng-derived ligand that targets G protein-coupled lysophosphatidic acid receptors. Curr Drug Targets 2012;13:1659-64.  https://doi.org/10.2174/138945012803529947
  16. Choi JH, Jang M, Oh S, Nah SY, Cho IH. Multi-target protective effects of gintonin in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Mediated model of Parkinson's disease via lysophosphatidic acid receptors. Front Pharmacol 2018;9:515. 
  17. Jang M, Choi JH, Chang Y, Lee SJ, Nah SY, Cho IH. Gintonin, a ginseng-derived ingredient, as a novel therapeutic strategy for Huntington's disease: activation of the Nrf2 pathway through lysophosphatidic acid receptors. Brain Behav Immun 2019;80:146-62.  https://doi.org/10.1016/j.bbi.2019.03.001
  18. Choi JH, Oh J, Lee MJ, Ko SG, Nah SY, Cho IH. Gintonin mitigates experimental autoimmune encephalomyelitis by stabilization of Nrf2 signaling via stimulation of lysophosphatidic acid receptors. Brain Behav Immun 2021;93:384-98.  https://doi.org/10.1016/j.bbi.2020.12.004
  19. Leite JP, Garcia-Cairasco N, Cavalheiro EA. New insights from the use of pilocarpine and kainate models. Epilepsy Res 2002;50:93-103.  https://doi.org/10.1016/S0920-1211(02)00072-4
  20. Levesque M, Avoli M. The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev 2013;37:2887-99.  https://doi.org/10.1016/j.neubiorev.2013.10.011
  21. Hong J, Cho IH, Kwak KI, Suh EC, Seo J, Min HJ, Choi SY, Kim CH, Park SH, Jo EK. Microglial Toll-like receptor 2 contributes to kainic acid-induced glial activation and hippocampal neuronal cell death. J Biol Chem 2010;285:39447-57.  https://doi.org/10.1074/jbc.M110.132522
  22. Cho IH, Hong J, Suh EC, Kim JH, Lee H, Lee JE, Lee S, Kim CH, Kim DW, Jo EK. Role of microglial IKKbeta in kainic acid-induced hippocampal neuronal cell death. Brain 2008;131:3019-33.  https://doi.org/10.1093/brain/awn230
  23. Cho IH, Kim SW, Kim JB, Kim TK, Lee KW, Han PL, Lee JK. Ethyl pyruvate attenuates kainic acid-induced neuronal cell death in the mouse hippocampus. J Neurosci Res 2006;84:1505-11.  https://doi.org/10.1002/jnr.21052
  24. Cho IH, Im JY, Kim D, Kim KS, Lee JK, Han PL. Protective effects of extracellular glutathione against Zn2+-induced cell death in vitro and in vivo. J Neurosci Res 2003;74:736-43.  https://doi.org/10.1002/jnr.10794
  25. Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW, Crystal RG, Darnell RB, Ferrante RJ, Fillit H, et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature 2012;490:187-91.  https://doi.org/10.1038/nature11556
  26. Choi JH, Jang M, Kim EJ, Kim H, Ye SK, Cho IH. Oriental medicine woohwangchungsimwon attenuates kainic acid-induced seizures and neuronal cell death in the Hippocampus. Rejuvenation Res 2016;19:394-405.  https://doi.org/10.1089/rej.2015.1779
  27. Cho HJ, Choi SH, Kim HJ, Lee BH, Rhim H, Kim HC, Hwang SH, Nah SY. Bioactive lipids in gintonin-enriched fraction from ginseng. J Ginseng Res 2019;43:209-17.  https://doi.org/10.1016/j.jgr.2017.11.006
  28. Franklin K, Paxinos G. The mouse brain in stereotaxic coordinates. 2 ed. San Diego: Academic Press; 2001. 
  29. Lee MJ, Jang M, Choi J, Chang BS, Kim DY, Kim SH, Kwak YS, Oh S, Lee JH, Chang BJ, et al. Korean red ginseng and ginsenoside-Rb1/-rg1 alleviate experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells and upregulating regulatory T cells. Mol Neurobiol 2015;53(3):1977-2002.  https://doi.org/10.1007/s12035-015-9131-4
  30. Lee MJ, Jang M, Choi J, Lee G, Min HJ, Chung WS, Kim JI, Jee Y, Chae Y, Kim SH, et al. Bee venom acupuncture alleviates experimental autoimmune encephalomyelitis by upregulating regulatory T cells and suppressing Th1 and Th17 responses. Mol Neurobiol 2015;53(3):1419-45.  https://doi.org/10.1007/s12035-014-9012-2
  31. Jang M, Lee MJ, Cho IH. Ethyl pyruvate ameliorates 3-nitropropionic acid-induced striatal toxicity through anti-neuronal cell death and anti-inflammatory mechanisms. Brain Behav Immun 2014;38:151-65.  https://doi.org/10.1016/j.bbi.2014.01.015
  32. VanGuilder HD, Bixler GV, Brucklacher RM, Farley JA, Yan H, Warrington JP, Sonntag WE, Freeman WM. Concurrent hippocampal induction of MHC II pathway components and glial activation with advanced aging is not correlated with cognitive impairment. J Neuroinflammation 2011;8:138. 
  33. Venkatraman G, Benesch MG, Tang X, Dewald J, McMullen TP, Brindley DN. Lysophosphatidate signaling stabilizes Nrf2 and increases the expression of genes involved in drug resistance and oxidative stress responses: implications for cancer treatment. FASEB J 2015;29:772-85.  https://doi.org/10.1096/fj.14-262659
  34. Schauwecker PE, Steward O. Genetic determinants of susceptibility to excitotoxic cell death: implications for gene targeting approaches. Proc Natl Acad Sci U S A 1997;94:4103-8.  https://doi.org/10.1073/pnas.94.8.4103
  35. Ferraro TN, Golden GT, Smith GG, Berrettini WH. Differential susceptibility to seizures induced by systemic kainic acid treatment in mature DBA/2J and C57BL/6J mice. Epilepsia 1995;36:301-7.  https://doi.org/10.1111/j.1528-1157.1995.tb00999.x
  36. Sumanont Y, Murakami Y, Tohda M, Vajragupta O, Watanabe H, Matsumoto K. Effects of manganese complexes of curcumin and diacetylcurcumin on kainic acid-induced neurotoxic responses in the rat hippocampus. Biol Pharm Bull 2007;30:1732-9.  https://doi.org/10.1248/bpb.30.1732
  37. Goodenough S, Davidson M, Chen W, Beckmann A, Pujic Z, Otsuki M, Matsumoto I, Wilce P. Immediate early gene expression and delayed cell death in limbic areas of the rat brain after kainic acid treatment and recovery in the cold. Exp Neurol 1997;145:451-61.  https://doi.org/10.1006/exnr.1997.6471
  38. Mohammadi S, Pavlik A, Krajci D, Al-Sarraf H. NMDA preconditioning and neuroprotection in vivo: delayed onset of kainic acid-induced neurodegeneration and c-Fos attenuation in CA3a neurons. Brain Res 2009;1256:162-72.  https://doi.org/10.1016/j.brainres.2008.12.019
  39. Akiyama H, Tooyama I, Kondo H, Ikeda K, Kimura H, McGeer EG, McGeer PL. Early response of brain resident microglia to kainic acid-induced hippocampal lesions. Brain Res 1994;635:257-68.  https://doi.org/10.1016/0006-8993(94)91447-8
  40. Taniwaki Y. The microglial activation and the expression of heat shock protein 27 through the propagation pathway of kainic acid-induced hippocampal seizure in the rat. Fukuoka Igaku Zasshi 2001;92:27-39. 
  41. Siao CJ, Fernandez SR, Tsirka SE. Cell type-specific roles for tissue plasminogen activator released by neurons or microglia after excitotoxic injury. J Neurosci 2003;23:3234-42.  https://doi.org/10.1523/JNEUROSCI.23-08-03234.2003
  42. Andersson PB, Perry VH, Gordon S. The CNS acute inflammatory response to excitotoxic neuronal cell death. Immunol Lett 1991;30:177-81.  https://doi.org/10.1016/0165-2478(91)90022-3
  43. Llona-Minguez S, Ghassemian A, Helleday T. Lysophosphatidic acid receptor (LPAR) modulators: the current pharmacological toolbox. Prog Lipid Res 2015;58:51-75.  https://doi.org/10.1016/j.plipres.2015.01.004
  44. Muessel MJ, Harry GJ, Armstrong DL, Storey NM. SDF-1alpha and LPA modulate microglia potassium channels through rho gases to regulate cell morphology. Glia 2013;61:1620-8.  https://doi.org/10.1002/glia.22543
  45. Schilling T, Stock C, Schwab A, Eder C. Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration. Eur J Neurosci 2004;19:1469-74.  https://doi.org/10.1111/j.1460-9568.2004.03265.x
  46. Bernhart E, Kollroser M, Rechberger G, Reicher H, Heinemann A, Schratl P, Hallstrom S, Wintersperger A, Nusshold C, DeVaney T, et al. Lysophosphatidic acid receptor activation affects the C13NJ microglia cell line proteome leading to alterations in glycolysis, motility, and cytoskeletal architecture. Proteomics 2010;10:141-58.  https://doi.org/10.1002/pmic.200900195
  47. Goldshmit Y, Munro K, Leong SY, Pebay A, Turnley AM. LPA receptor expression in the central nervous system in health and following injury. Cell Tissue Res 2010;341:23-32.  https://doi.org/10.1007/s00441-010-0977-5
  48. Contos JJ, Fukushima N, Weiner JA, Kaushal D, Chun J. Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc Natl Acad Sci U S A 2000;97:13384-9.  https://doi.org/10.1073/pnas.97.24.13384
  49. Ma L, Nagai J, Chun J, Ueda H. An LPA species (18:1 LPA) plays key roles in the self-amplification of spinal LPA production in the peripheral neuropathic pain model. Mol Pain 2013;9:29. 
  50. Hwang SH, Shin EJ, Shin TJ, Lee BH, Choi SH, Kang J, Kim HJ, Kwon SH, Jang CG, Lee JH, et al. Gintonin, a ginseng-derived lysophosphatidic acid receptor ligand, attenuates Alzheimer's disease-related neuropathies: involvement of non-amyloidogenic processing. J Alzheimers Dis 2012;31:207-23.  https://doi.org/10.3233/JAD-2012-120439
  51. Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 2017;12:7. 
  52. Adamczyk B, Adamczyk-Sowa M. New insights into the role of oxidative stress mechanisms in the pathophysiology and treatment of multiple sclerosis. Oxid Med Cell Longev 2016;2016:1973834. 
  53. Ullah I, Park HY, Kim MO. Anthocyanins protect against kainic acid-induced excitotoxicity and apoptosis via ROS-activated AMPK pathway in hippocampal neurons. CNS Neurosci Ther 2014;20:327-38.  https://doi.org/10.1111/cns.12218
  54. Zhao Y, Lutzen U, Gohlke P, Jiang P, Herdegen T, Culman J. Neuroprotective and antioxidative effects of pioglitazone in brain tissue adjacent to the ischemic core are mediated by PI3K/Akt and Nrf2/ARE pathways. J Mol Med (Berl) 2021;99:1073-83.  https://doi.org/10.1007/s00109-021-02065-3
  55. Cui Y, Xiong Y, Li H, Zeng M, Wang Y, Li Y, Zou X, Lv W, Gao J, Cao R, et al. Chalcone-derived Nrf2 activator protects cognitive function via maintaining neuronal redox status. Antioxidants (Basel) 2021;10. 
  56. Hertel M, Braun S, Durka S, Alzheimer C, Werner S. Upregulation and activation of the Nrf-1 transcription factor in the lesioned hippocampus. Eur J Neurosci 2002;15:1707-11.  https://doi.org/10.1046/j.1460-9568.2002.01992.x
  57. Jang M, Cho IH. Sulforaphane ameliorates 3-nitropropionic acid-induced striatal toxicity by activating the keap1-nrf2-ARE pathway and inhibiting the MAPKs and NF-kappaB pathways. Mol Neurobiol 2016;53:2619-35. https://doi.org/10.1007/s12035-015-9230-2