DOI QR코드

DOI QR Code

Ipomoea aquatic Extracts (IAE) Attenuated Microglial Inflammation via Nrf2 Signaling

공심채 추출물(IAE)의 LPS로 유도된 미세아교세포에서의 Nrf2기전을 통한 항염증 효과

  • Received : 2023.08.24
  • Accepted : 2023.10.24
  • Published : 2023.10.31

Abstract

Ipomoea aquatic is a leafy vegetable of the Convolvulaceae family, and is a tropical plant widely inhabiting southern China and Southeast Asia, and is widely known as Morning Glory in the West. In this study, the anti-inflammatory effects of ethyl acetate extract from Ipomoea aquatic extracts (IAE) were tested against lipopolysaccharide (LPS)-induced activation microglia BV2 cells. The production of nitric oxide (NO) and cell viability were measured using the Griess reagent and MTT assay, respectively. Inflammatory cytokine [interleukin (IL)-6, tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β)] were detected qPCR in LPS induced BV-2 cells. Subsequently, nuclear factor (NF)-κB, mitogen-activated protein kinases (MAPKs), and nuclear factor erythroid-2-related factor 2 (Nrf2) were analyzed through western blot analyses and immunofluorescence. Ipomoea aquatic down-regulated of inflammatory markers and up-regulated anti-inflammatory and anti-oxidants in BV2 cells.

Keywords

Acknowledgement

본 연구는 한국식품연구원 기본사업(E0210300, E0212021)과 한국연구재단 바이오소재 활용기반조성사업(GA224600, 2022M3H9A1084670)의 지원을 받아 연구되었습니다.

References

  1. Barnett R. 2019. Alzheimer's disease Lancet., 393(10181):1589
  2. Byun MW. 2013. Immunomodulatory activities of apple seed extracts on macrophage. J. Korean Soc. Food Sci. Nutr., 42: 1513-1517  https://doi.org/10.3746/jkfn.2013.42.9.1513
  3. Cargnello M, Roux PP. 2011. Activation and function of the MAPKs and their substrates, the MAPK activated protein kinases. Microbiol. Mol. Biol. Rev., 75(1):50-83  https://doi.org/10.1128/MMBR.00031-10
  4. Cobb MH, Goldsmith EJ. 2000. Dimerization in MAP-kinase signaling. Trends Biochem. Sci., 25(1):7-9  https://doi.org/10.1016/S0968-0004(99)01508-X
  5. Chen F, Castranova V, Shi X, Demers LM. 1999. New insights into the role of nuclear factor-κB, a ubiquitous transcription factor in the initiation of diseases. Clin. Chem., 45(1):7-17  https://doi.org/10.1093/clinchem/45.1.7
  6. Chen Q, Qi C, Peng G, Liu Y, Zhang X, Meng Z. 2018. Immune-enhancing effects of a polysaccharide PRG1-1 from Russula griseocarnosa on RAW 264.7 macrophage cells via the MAPK and NF-κB signalling pathways. Food. Agric. Immunol., 29(1):833-844  https://doi.org/10.1080/09540105.2018.1461198
  7. Choi JW, Kim ST, Choi SY, Choi IW, Hur JY. 2023. Anti-inflammation Effect of Cyrtomium fortunei J.Sm. Extracts in Lipopolysaccharides-induced Microglia BV2 Cell. J. Korean Soc. Food Cult., 38(3): 176-183 
  8. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. 2013. Origin and differentiation of microglia. Front. Cell Neurosci., 7:1-14  https://doi.org/10.3389/fncel.2013.00045
  9. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. 1982. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem., 126(1): 131-138  https://doi.org/10.1016/0003-2697(82)90118-X
  10. Han NR, Kim HJ, Lee JS, Kim HY, Moon PD, Kim HM, Jeong HJ. 2021. The immune-enhancing effect of anthocyaninfucoidan nanocomplex in RAW264.7 macrohages and cyclophosphamide-induced immunosuppressed mice. J. Food Biochem., 45:e13631 
  11. Hickman SE, El Khoury J. 2014. TREM2 and the neuroimmunology of Alzheimer's disease. Biochem. Pharmacol., 88(4):495-498  https://doi.org/10.1016/j.bcp.2013.11.021
  12. Huang BP, Lin CH, Chen HM, Lin JT, Cheng YF, Kao SH. 2015. AMPK activation inhibits expression of proinflammatory mediators through downregulation of PI3K/p38 MAPK and NF-κB signaling in murine macrophages. DNA Cell Biol., 34(2): 133-141  https://doi.org/10.1089/dna.2014.2630
  13. Innamorato NG, Rojo AI, Garcia-Yague AJ, Yamamoto M, de Ceballos ML, Cuadrado A. 2008. The transcription factor Nrf2 is a therapeutic target against brain inflammation. J. Immunol., 181(1):680-589 
  14. Kang KA, Hyun JW. 2017. Oxidative stress, Nrf2, and epigenetic modification contribute to anticancer drug resistance. Toxicol. Res., 33:1-5  https://doi.org/10.5487/TR.2017.33.1.001
  15. Kim HS. 2017. Effect of Ipomoea aquatica extract on anti-melanogenesis and skin barrier function. J. Food Sci. Technol., 49(5):519-523  https://doi.org/10.1111/ijfs.13308
  16. Kim SJ, Lee S, Park SE, Lee JS, Chung MJ. 2018. Neuroprotective effects of bread containing Aster scaber Thunb. and Stachys sieboldii Miq. against ethanol- or H2O2-induced neuronal cell death. J. Korean Soc. Food Sci. Nutr., 47:24-31  https://doi.org/10.3746/jkfn.2018.47.1.024
  17. Kim YK, Na KS, Myint AM, Leonard BE. 2016. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog. Neuropsychopharmacol. Bio. Psychiatry., 64:277-284  https://doi.org/10.1016/j.pnpbp.2015.06.008
  18. Lee DH, Park JS, Lee YS, Sung SH, Lee YH, Bae SH. 2017. The hypertension drug, verapamil, activates Nrf2 by promoting p62-dependent autophagic Keap1 degradation and prevents acetaminophen-induced cytotoxicity. BMB Rep., 50(2): 91-96  https://doi.org/10.5483/BMBRep.2017.50.2.188
  19. Lee SJ, Lim KT. 2008. Phytoglycoprotein inhibits interleukin-1β and interleukin-6 via p38 mitogen-activated protein kinase in lipo-polysaccharide-stimulated RAW264.7 cells. Naunyn Schmiedebergs Arch. Pharmacol., 377:45-54  https://doi.org/10.1007/s00210-007-0253-8
  20. Lim HS, Kim YJ, Kim BY, Park G, Jeong SJ. 2018. The Anti-neuroinflammatory Activity of Tectorigenin Pretreatment via Downregulated NF-kappaB and ERK/JNK Pathways in BV-2 Microglial and Microglia Inactivation in Mice With Lipopolysaccharide. Front. Pharmacol., 9(462):1-13  https://doi.org/10.3389/fphar.2018.00001
  21. Malalavidhane TS, Wickramasinghe SM, Perera MS, Jansz ER. 2003. Oral hypoglycaemic activity of Ipomoea aquatic in streptozotocin-induced, diabetic wistar rats and type II diabetics. Phytother. Res., 17(9):1098-1100  https://doi.org/10.1002/ptr.1345
  22. Murakami A, Ohigashi H. 2007. Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int. J. Cancer., 121(11):2357-2363  https://doi.org/10.1002/ijc.23161
  23. Pardridge WM. 2022. A Historical Review of Brain Drug Delivery. Pharmaceutics. 14(6):1283 
  24. Rozemuller JM, van Muiswinkel FL. 2000. Microglia and neurodegeneration. Eur. J. Clin. Invest., 30(6):469-470  https://doi.org/10.1046/j.1365-2362.2000.00665.x
  25. Samuelsson G, Farah MH, Claeson P, Hagos M, Thulin M, Hedberg O, Warfa AM, Hassan AO, Elmi AH, Abdurahman AD. 1992. Inventory of plants used in traditional medicine in Somalia. II. Plants of the families combretaceae to labiatae. J. Ethnopharmacol., 37(1): 47-70  https://doi.org/10.1016/0378-8741(92)90004-B
  26. Solito E, Sastre M. 2012. Microglia function in Alzheimer's disease. Front. Pharmacol., 3(14):1-10  https://doi.org/10.3389/fphar.2012.00014
  27. Suzumura A. 2013. Neuron-microglia interaction in neuroinflammation. Curr. Protein Pept. Sci., 14(1):16-20  https://doi.org/10.2174/1389203711314010004
  28. Tao W, Hu Y, Chen Z, Dai Y, Hu Y, Qi M. 2021. Magnolol attenuates depressive-like behaviors by polarizing microglia towards the M2 phenotype through the regulation of Nrf2/HO-1/NLRP3 signaling pathway. Phytomed., 91:153692 
  29. Yang F, Chen R. 2021. Sestrin1 exerts a cytoprotective role against oxygen-glucose deprivation/reoxygenation-induced neuronal injury by potentiating Nrf2 activation via the modulation of Keap1. Brain Res., 1750 (1):147165 
  30. Yang T, Sun D, Huang YG, Smart A, Briggs JP, Schnermann JB. 1999. Differential regulation of COX-2 expression in the kidney by lipopolysaccharide: role of CD14. Am. J. Physiol., 277(1):F10-F16  https://doi.org/10.1152/ajprenal.1999.277.1.F10
  31. Zhang R, Xu M, Wang Y, Xie F, Zhang G, Qin X. 2017. Nrf2-a Promising Therapeutic Target for Defensing Against Oxidative Stress in Stroke. Mol. Neurobiol., 54:6006-6017  https://doi.org/10.1007/s12035-016-0111-0