• 제목/요약/키워드: BRIDGE 3.0

검색결과 521건 처리시간 0.033초

Seismic behavior and design method of socket self-centering bridge pier with hybrid energy dissipation system

  • Guo, Mengqiang;Men, Jinjie;Fan, Dongxin;Shen, Yanli
    • Earthquakes and Structures
    • /
    • 제23권3호
    • /
    • pp.271-282
    • /
    • 2022
  • Seismic resisting self-centering bridge piers with high energy dissipation and negligible residual displacement after an earthquake event are focus topics of current structural engineering. The energy dissipation components of typical bridge piers are often relatively single; and exhibit a certain level of damage under earthquakes, leading to large residual displacements and low cumulative energy dissipation. In this paper, a novel socket self-centering bridge pier with a hybrid energy dissipation system is proposed. The seismic resilience of bridge piers can be improved through the rational design of annular grooves and rubber cushions. The seismic response was evaluated through the finite element method. The effects of rubber cushion thickness, annular groove depth, axial compression ratio, and lateral strength contribution ratio of rubber cushion on the seismic behavior of bridge piers are systematically studied. The results show that the annular groove depth has the greatest influence on the seismic performance of the bridge pier. Especially, the lateral strength contribution ratio of the rubber cushion mainly depends on the depth of the annular groove. The axial compression ratio has a significant effect on the ultimate bearing capacity. Finally, the seismic design method is proposed according to the influence of the above research parameters on the seismic performance of bridge piers, and the method is validated by an example. It is suggested that the range of lateral strength contribution ratio of rubber cushion is 0.028 ~ 0.053.

담치의 형태변이에 관한 연구 (STUDY ON THE MORPHOLOGICAL VARIATIONS OF MUSSEL MYTILUS CORUSCUS GOULD)

  • 유성규;강용주
    • 한국수산과학회지
    • /
    • 제7권2호
    • /
    • pp.87-90
    • /
    • 1974
  • 1964년 1월 13일에 통영군 산양면 풍화리와, 1964년 5월 15일 통영군 욕지면 연화도 및 1964년 8월 20일 부산 영도 대교아래에서 각각 담치(Mytilus coruscus)을 채집하여 그 형태적 변이에 대해서 조사한 결과, 1. 가장 큰 개체는 부산 영도산으로써 각고 164.1mm 각장 77.5mm, 각폭 52.2mm, 전체 무게 291.9g, 육중 84.86g이었다. 3. 각고에 대한 각장의 상대성장식은 부산 영도산이 L=0.4954H+1.9516, 통영 산양면산이 L=0.3718H+14.145, 욕지 연화도산이 L=0.4074H+9.6610이었고, 각고에 대한 각폭의 상대성장식은 부산 영도산이 B=0.3426H+0.2052, 통영 산양면산이 B=0.3084H+3.6183, 욕지 연화도산이 B=0.3507H+0.8028이있다. 각고에 대한 각장의 성장식에서 담치은 외양에서 내만으로 갈수록 기울기 값에 차이가 나고 내만성인 진주담치와 비슷해지는 경향이 있으며, 성장에 따라 각형이 변하는 것으로 추측된다.

  • PDF

공해(公害)에 관(關)한 조사연구(調査硏究) 제이편(第二編) 한강(漢江), 낙동강(洛東江) 수질오염도(水質汚染度)에 관(關)한 비교(比較) 조사(調査) 연구(硏究) (A Study on Public Nuisance in Han River and Nackdong River Part II. Survey on Water Pollution)

  • 차철환;신영수;박순영;조광수;주종유;김교성;최덕일
    • Journal of Preventive Medicine and Public Health
    • /
    • 제4권1호
    • /
    • pp.65-76
    • /
    • 1971
  • In view of ever rising water pollution problems of river in the vicinity of large urban communities, the author has made an investigation on the pollution of water sampled from Han River (Seoul area) and Nakdong River (Daegu city area) during the period from July to December, 1970. The water samples were taken twice a month during the study period of 6 months from 7 points (locations) along the main stream of Han River at Seoul city and 5 points of Nakdong River at Daegu city. The samples ware measured and analyzed in accordance with the recognized methods in the 'Standard Methods for Examination of Water and waste' by American Public Health Association. The obtained results are as follows : I. Han River. 1. Average turbidity was 5.1 units ranging from 1 to 10 units and the turbidity of down stream was higher than that of the upper stream. 2. pH value showed slight alkalinity (mean;7.2) except Yunchang-Dong (6.9). 3. The mean value of Dissolved Oxygen contents (D.O) was 7.2 ppm. (range of 3.4-10.5ppm.). D.O. of the upper stream (8.2 ppm. at Walker Hill boating place, 8.0 ppm. at the Gwangzang Bridge and Ddookdo) was higher than that of he downstream (5.6ppm. at Yumchang-Dong, 6.4 ppm. at the 2nd Han River Bridge), and D.O. in the winter season was higher than that in the summer season, respectively. 4 The mean value of the Biochemical Oxygen Demand (B.O.D.) was 28.3 ppm. (range of 6.2-64.8 ppm.). The mean value of B.O.D. was 48.7 ppm. at Yumchang-Dong, 42.3 ppm. at the 2nd Han River Bridge, 34.0 ppm. at the 1st nan River Bridge, 28.5 ppm. at the 3rd Han River Bridge, 19.2 ppm. at Dookdo, 13.2 ppm. at the Gwangzang Bridge, and 10.2 ppm. at the Walker Hill boating place in order of value. B.O.D. in July and August (35.6 and 34.5 ppm.) were the highest and that in November and December (18.6 and 21.2 ppm.) were the lowest. 5. Suspended Solids (SS) were from 15.0 to 667.0 ppm. with the mean of 222.1 ppm. 'Suspended Solids' of the water samples at Yumchang-Dong and the 2nd Han River Bridge were found to be 378.1 ppm. and 283.9 ppm. respectively which were higher than at the Gwangzang Bridge (134.1 ppm.) and at Walker Hill boating place (79.3ppm.). 6. Coliform colonies counting of the water samples ranged from $0-2,500{\times}10/100ml$. with the mean value of $205.6{\times}10/100ml$. The most contaminated water sample by coliform were from the point of the 2nd Han River Bridge with $640.8{\times}10/100ml$ while the lowest ones were from Walker Hill boating place with $17.2{\times}10/100ml$. There was also a seasonal variation in coliform contamination that is the higher in summer and the lower in winter. II. Nakdong River 1. The mean value of turbidity was 2.3 units with range of 0 to 9.0 units. The highest point was at Geumho River (7.2 units). and the lowest point was at Gangzung and Moonsan (0.45 and 0.41 units). 2. The mean value of pH was 7.5 (range of 7.1-8.5) and highest point was Geumho River with 8.5. 3. The mean value of D.O. was 8.1 ppm. (range of 3.4-11.2 ppm.). D.O. of the upper stream showed higher value than that of the down stream, and the winter season than the summer season. 4. B.O.D. ranged from 2.6 to 57.0 ppm. (mean; 20.4ppm.). The water sample at Geumho River showed the highest value (41.5 ppm.) while at Moonsan and Gangzung showed the lowest (4.6 and 4.7 ppm.). 5. The mean value of suspended solids was 48.7 ppm. (range of 4.0-182.0 ppm.). The highest month was July (63.7ppm.) and August (62.1 ppm.) and the lowest month was October (37.0 ppm.) and December (24.4 ppm.). 6. The mean value of the coliform colonies was $22.7{\times}10/100ml$. (range of $0-243{\times}10/100ml$.). The highest number of the colonies was found in the sample water at the Whawon recreation area ($50.5{\times}10/100ml$.) followed by the Geumho River ($33.9{\times}10/100ml$.), the Goryung Bridge ($28.3{\times}10/100ml$.), Gangzung($0.7{\times}10/100ml$), and Moonsan ($0.6{\times}10/100ml$.).

  • PDF

Island-Bridge 구조의 강성도 경사형 신축 전자패키지의 유효 탄성계수 및 변형거동 분석 (Analysis on Effective Elastic Modulus and Deformation Behavior of a Stiffness-Gradient Stretchable Electronic Package with the Island-Bridge Structure)

  • 오태성
    • 마이크로전자및패키징학회지
    • /
    • 제26권4호
    • /
    • pp.39-46
    • /
    • 2019
  • Polydimethylsiloxane (PDMS)를 베이스 기판으로 사용하고 이보다 강성도가 높은 flexible printed circuit board (FPCB)를 island 기판으로 사용하여 island-bridge 구조의 soft PDMS/hard PDMS/FPCB 신축 패키지를 형성하고, 이의 유효 탄성계수와 변형거동을 분석하였다. 각기 탄성계수가 0.28 MPa, 1.74 MPa 및 1.85 GPa인 soft PDMS, hard PDMS, FPCB를 사용하여 형성한 soft PDMS/hard PDMS/FPCB 신축 패키지의 유효 탄성계수는 0.58 MPa로 분석되었다. Soft PDMS/hard PDMS/FPCB 신축 패키지에서 soft PDMS의 변형률이 0.3이 되도록 인장시 hard PDMS와 FPCB의 변형률은 각기 0.1과 0.003이었다.

Behaviour of soil-steel composite bridge with various cover depths under seismic excitation

  • Maleska, Tomasz;Beben, Damian
    • Steel and Composite Structures
    • /
    • 제42권6호
    • /
    • pp.747-764
    • /
    • 2022
  • The design codes and calculation methods related to soil-steel composite bridges and culverts only specify the minimum soil cover depth. This value is connected with the bridge span and shell height. In the case of static and dynamic loads (like passing vehicles), such approach seems to be quite reasonable. However, it is important to know how the soil cover depth affects the behaviour of soil-steel composite bridges under seismic excitation. This paper presents the results of a numerical study of soil-steel bridges with different soil cover depths (1.00, 2.00, 2.40, 3.00, 4.00, 5.00, 6.00 and 7.00 m) under seismic excitation. In addition, the same soil cover depths with different boundary conditions of the soil-steel bridge were analysed. The analysed bridge has two closed pipe-arches in its cross section. The load-carrying structure was constructed as two shells assembled from corrugated steel plate sheets, designed with a depth of 0.05 m, pitch of 0.15 m, and plate thickness of 0.003 m. The shell span is 4.40 m, and the shell height is 2.80 m. Numerical analysis was conducted using the DIANA programme based on the finite element method. A nonlinear model with El Centro records and the time history method was used to analyse the problem.

압축전담 교량 내진보강공법 개발 연구 (Development of Compression-Only Bridge Seismic Reinforcement Method)

  • 장유식;윤원섭;유광호
    • 한국산업융합학회 논문집
    • /
    • 제25권6_3호
    • /
    • pp.1221-1230
    • /
    • 2022
  • In this study, a seismic reinforcement method was studied to improve the seismic performance of aged bridges. The construction method developed in this study is a compression-only bridge seismic reinforcement method, and has excellent economic feasibility and workability compared to existing construction methods. In the case of aged bridges, there was an advantage that could compensate for the disadvantages that it was difficult to apply the existing reinforcement method. For the newly developed method, the effect of reinforcement was analyzed through resin analysis. As a result of the analysis, when the reinforcement was applied, the axial reinforcement effect was excellent, and the field applicability was excellent as it showed better results than the existing seismic isolation backing method.

증상을 동반한 제 2형 부주상골에서 교량형 봉합술을 이용한 변형 Kidner 술식의 단기 치료 결과 (Short-Term Results of a Modified Kidner Procedure Using a Suture Bridge Technique for Symptomatic Type II Accessory Navicular)

  • 김응수;문진선
    • 대한족부족관절학회지
    • /
    • 제20권2호
    • /
    • pp.73-77
    • /
    • 2016
  • Purpose: The purpose of this study was to evaluate the clinical outcome of a modified Kidner procedure using a suture bridge technique in symptomatic type II accessory navicular. Materials and Methods: Between January 2013 and December 2014, a total of 35 cases with symptomatic type II accessory navicular were treated with a modified Kidner procedure using the suture bridge technique. The patients were evaluated preoperatively, 3 months after surgery, and at the latest follow-up (at least six months postoperatively) clinically via the American Orthopaedic Foot and Ankle Society (AOFAS) midfoot score, visual analogue scale (VAS), and the self-subjective satisfaction score. Results: The mean AOFAS midfoot score demonstrated significant improvement from a mean of 45.3 preoperatively to a mean of 89.2 at 3 months after surgery. At the latest follow-up, the mean AOFAS midfoot score was 92.6 (p<0.001). The mean VAS also improved significantly, decreasing from 6.7 out of 10 preoperatively to 1.8 at 3 months after surgery. At the latest follow-up, the VAS was 1.2 (p<0.001). The mean time of a single-limb heel raise was 4.6 months postoperatively and the self-subjective satisfaction score was 1.4 out of 4 at the latest follow-up. Conclusion: The short-term surgical results of the modified Kidner procedure with a suture bridge technique for symptomatic type II accessory navicular were good to excellent in terms of pain, functional and clinical assessments. In conclusion, the modified Kidner procedure with the suture bridge technique is a reasonable treatment option for symptomatic type II accessory navicular.

보통 포틀랜드 콘크리트 기반 교면포장 재료 성능 평가 (Performance Evaluation of Bridge Deck Materials based on Ordinary Portland Cement Concrete)

  • 남정희;전성일;권수안
    • 한국도로학회논문집
    • /
    • 제19권6호
    • /
    • pp.129-137
    • /
    • 2017
  • PURPOSES : The purpose of this study is to develop bridge deck concrete materials based on ordinary Portland cement concrete, and to evaluate the applicability of the developed materials through material properties tests. METHODS : For field implementation, raw material (cement, fine aggregate, and coarse aggregate) properties, fresh concrete properties (slump and air content), strength (compressive, flexural and bond strength) gain, and durability (freeze-thaw resistance, scaling resistance, and rapid chloride penetrating resistance) performance were evaluated in the laboratory. RESULTS : For the selected binder content of $410kg/m^3$, W/B = 0.42, and S/a = 0.48, the following material performance results were obtained. Considering the capacity of the deck finisher, a minimum slump of 150 mm was required. At least 6 % of air content was obtained to resist freeze-thaw damage. In terms of strength, 51.28 MPa of compressive strength, 7.41 MPa of flexural strength, and 2.56 MPa of bond strength at 28 days after construction were obtained. A total of 94.9 % of the relative dynamic modulus of elasticity after 300 cycles of freeze-thaw resistance testing and $0.0056kg/m^2$ of weight loss in a scaling resistance test were measured. However, in a chloride ion penetration resistance test, the result of 3,356 Coulomb, which exceeds the threshold value of the standard specification (1000 Coulomb at 56 days) was observed. CONCLUSIONS : Instead of using high-performance modified bridge deck materials such as latex or silica fume, we developed an optimum mix design based on ordinary Portland cement concrete. A test construction was carried out at ramp bridge B (bridge length = 111 m) in Gim Jai City. Immediately after the concrete was poured, the curing compound was applied, and then wet mat curing was applied for 28 days. Considering the fact that cracks did not occur during the monitoring period, the applicability of the developed material is considered to be high.

Effects of types of bridge decks on competitive relationships between aerostatic and flutter stability for a super long cable-stayed bridge

  • Hu, Chuanxin;Zhou, Zhiyong;Jiang, Baosong
    • Wind and Structures
    • /
    • 제28권4호
    • /
    • pp.255-270
    • /
    • 2019
  • Aerodynamic configurations of bridge decks have significant effects on the aerostatic torsional divergence and flutter forsuper long-span bridges, which are onset for selection of suitable bridge decksfor those bridges. Based on a cable-stayed bridge with double main spans of 1500 m, considering typical twin-box, stiffening truss and closed-box section, which are the most commonly used form of bridge decks and assumed that the rigidity of those section is completely equivalent, are utilized to investigate the effects of aerodynamic configurations of bridge decks on aerodynamic instability performance comprised of the aerostatic torsional divergence and flutter, by means of wind tunnel tests and numerical calculations, including three-dimensional (3D) multimode flutter analysis and nonlinear aerostatic analysis. Regarding the aerostatic torsional divergence, the results obtained in this study show twin-box section is the best, closed-box section the second-best, and the stiffening truss section the worst. Regarding the flutter, the flutter stability of the twin-box section is far better than that of the stiffening truss and closed-box section. Furthermore, wind-resistance design depends on the torsional divergence for the twin-box and stiffening truss section. However, there are obvious competitive relationships between the aerostatic torsional divergence and flutter for the closed-box section. Flutter occur before aerostatic instability at initial attack angle of $+3^{\circ}$ and $0^{\circ}$, while the aerostatic torsional divergence occur before flutter at initial attack angle of $-3^{\circ}$. The twin-box section is the best in terms of both aerostatic and flutter stability among those bridge decks. Then mechanisms of aerostatic torsional divergence are revealed by tracking the cable forces synchronous with deformation of the bridge decksin the instability process. It was also found that the onset wind velocities of these bridge decks are very similar at attack angle of $-3^{\circ}$. This indicatesthat a stable triangular structure made up of the cable planes, the tower, and the bridge deck greatly improves the aerostatic stability of the structure, while the aerodynamic effects associated with the aerodynamic configurations of the bridge decks have little effects on the aerostatic stability at initial attack angle of $-3^{\circ}$. In addition, instability patterns of the bridge depend on both the initial attack angles and aerodynamic configurations of the bridge decks. This study is helpful in determining bridge decksfor super long-span bridges in future.

매개변수해석을 통한 Extradosed PSC 박스 거더교의 구조특성 분석 (Parametric Study on the Structural Characteristics of Extradosed PSC Box Girder Bridges)

  • 정지승;전준창;박진석
    • 한국안전학회지
    • /
    • 제31권1호
    • /
    • pp.74-80
    • /
    • 2016
  • In this paper, structural characteristics for an extradosed prestressed concrete box girder bridge are investigated in terms of selective parameters. These parameters are mainly associated with the structural details of the extradosed bridge and derived from currently available literatures regarding previous design drawings. The analyses have been carried out using general-purpose structural analysis program, RM-Space Frame. The parameters evaluated for the present study represent the most salient features of the extradosed bridge and are as follows; 1) span length ratio(side-span length to center-span length), 2) boundary condition of girder, 3) height of pylon, 4) anchorage location of external cables and 5) girder stiffness. The analytical predictions indicate that span length ratio and pylon height are reasonably adequate in the range of 0.55 to 0.60 and $L_m/8$ to $L_m/12$ respectively for the bridge under consideration. Also, demonstrated is the boundary condition of girder, in which rigid-connection details give more efficiency than the continuous details. In addition, considering structural characteristics of the extradosed bridge, it is desirable that the girder stiffness should be determined by the stress range of external cables rather than bending moment of girder.