• Title/Summary/Keyword: BRAKING FORCE

Search Result 266, Processing Time 0.029 seconds

Analysis of Mixed Grade Transition in Continuous Thin Slab Casting with EMBR

  • J.H. Ahn;J.K. Yoon;이정의
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.271-271
    • /
    • 1999
  • A concentration change during grade transition operation in thin slab casting is investigated through computer simulation and the results are compared with experimental measurements. Fluid flow and mixing patterns in various tundish levers and flow rates were analysed by a three-dimensional mathematical model. Based on the contained results, a simple, efficient and accurate computational model is suggested to predict the concentration profile at the outlet of the tundish. Based on the model, mixing in and below the mold was analyzed considering electromagnetic braking force. The predicted concentration profiles show good agreements with the measured values. It is found that the lower vortices in the mold are suppressed by the electromagnetic field and a plug-like flow region develops, which decreases the intermixing of two different grades of steel and shortens the length of transition region.

Experimental Evaluation of an Energy Storage Device with High Rotaional Speed (에너지 저장용 고속회전기의 실험적 평가)

  • Lee, Jun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.193-196
    • /
    • 2014
  • Experimantal evaluation of an energy storage device with high rotational speed to store regenerative energy which might be generated during the braking period of the trains is presented. The proposed ESS is small scale model and has 5kW output power, high rotational speed. In general railway trains generate regenerative energy for 10-20 sec when the train brakes and also high traction energy is needed for very short moment (10 sec) when the train increases the traction force. Considering such characteristics of the railway system energy storage device for the railway should have very fast response property. Among the various energy storage devices flywheel energy storage system has the fastest response property, which means that flywheel ESS is the most suitable for the railway system.

  • PDF

A study of the rail and bridge stability according to rail conditions on the bridge (교량상 레일 조건에 따른 레일 및 교량의 안전성 연구)

  • Min, Kyung-Ju;Kim, Young-Kook;Woo, Yong-Keun
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.505-515
    • /
    • 2009
  • In railway bridges, various loads including train load, transverse load and braking force are applied to continuous CWR or semi-continuous longer rail located on non-continuous bridge superstructures. The rail-girder interaction due to thermal expansion is also very complex in railway bridges because the thermal characteristics for each of the rails and girder are quite different. Recently, the bridge retrofits for seismic loads were performed on bridges not designed for these loads. These retrofits may however have limitations with respect to rail-girder interactions because, in general these retrofits address issues related only to seismic loads. In this study of seismic evaluations for railway bridges, the load effects on the bridge rails from the road beds through the continuous rails shall be considered. Practical methods will be proposed which will increase the railway stability. For this, rail-girder interaction analyses due to train loads, temperature changes and seismic loads were performed and the results reviewed from a practical point of view.

  • PDF

Stability of CWR track on the High-Speed Railway Bridges considering Braking and Accelerating Forces (고속철도 차량의 시$\cdot$제동 하중에 대한 교량상 장대레일의 주행안전성 평가)

  • Chin Won-Jong;Kim Byung-Suk;Kwark Jong-Won;Kang Jae-Yoon;Choi Eun-Suk
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.769-774
    • /
    • 2004
  • In this paper, the main factors affect on the longitudinal rail force are discussed. Considering rail-bridge interaction, analytical and experimental evaluation of track behavior has been achieved. It is concluded that the horizontal ballast strength, the expansion length of the bridge span, and the stiffness of the bridge sub-structure are the significant parameters affecting the stability of the continuous welded rail (CWR) track. And, it is suggested that the ballast resistance forces should be maintained to ensure the track stability during the service.

  • PDF

Creepage Model Analysis for a Tilting Train (틸팅열차의 크리피지 모델 해석)

  • Kang, Chul-Goo;Kim, Ho-Yeon;Lee, Nam-Jin;Kim, Min-Soo;Goo, Byeong-Choon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.231-239
    • /
    • 2009
  • Traction and braking of trains are due to the rolling contact of the wheel on the rail, and the rolling contact is fundamental to an understanding of the behavior of the railroad system. The way in which the forces are transmitted in the rolling contact is complex and highly nonlinear. This paper describes a rolling contact theory, a creepage model between wheel and rail, and a dynamic model of the tilting train Hanvit-200. The validity of the model is verified through simulation study using Simulink.

Analysis of using Permanent Magnet Eddy Current Brake system (영구자석을 이용한 와전류 제동장치의 특성 해석)

  • Jang, S.M.;Cha, S.D.;Jeong, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.277-279
    • /
    • 2000
  • This paper proposes two kinds of the eddy current brake which uses permanent magnet. The one, like multipolar excitation consists of hexahedron shape of a segmented permanent magnetic and iron situated in the air-gap. The other, like multipolar excitation consists of only a segmented permanent magnetic. We use a finite element method to compute the flux distribution in the model. Also, we use the Galerkin-FEM with linear interpolation function may oscillate between the adjacent nodes to calculate the braking and attraction force. The advantages of the Halbach array are discussed.

  • PDF

Study of Friction Charactedstics of Non-asbestos Organic (NAO) and Semi-metallic Brake Pads During Automotive Braking (자동차 제동시 나타나는 마찰재의 마찰 특성에 관한 연구 (II. 비석면계 유기질 (Non-asbestos Organic) 마찰재와 반금속 (Semi-metallic) 마찰재의 마찰 특성 비교))

  • Kim, Seong-Jin;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.10-19
    • /
    • 1997
  • Frictional characteristics of two different types of automotive friction materials were studied. They were non-asbestos organic and semi-metallic friction materials. The two friction materials were tested using an inertial brake dynamometer to investigate friction stability, rooster tailing phenomena, temperature change during drags and stops. Results show that the level of the friction force is strong functions of time, temperature, and speed regardless of the type of friction materials. In particular, rooster tailing effects are pronounced in the case of semi-metallic friction materials compared to non-asbestos organic friction materials. The phenomena appear strongly dependent on raw materials contained in the friction materials.

Rear Drum Brake Grunt(stick-slip) Noise Improvement on Braking During Nose-dive & Return Condition (제동시 발생하는 리어 드럼브레이크 Grunt(stick-slip) Noise 개선)

  • Hong, Ilmin;Jang, Myunghoon;Kim, Sunho;Choi, Hongseok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.781-788
    • /
    • 2013
  • Grunt(stick-slip) noise happens between rear lining and drum on braking condition while vehicle is returning to steady position after nose-dive. The study presents a new testing and analysis methods for improving brake grunt noise on vehicle. Grunt noise is called a kind of stick slip noise with below 1 kHz frequency that is caused by the surfaces alternating between sticking to each other and sliding over each other with a corresponding change in friction force. This noise is typically come from that the static friction coefficient of surfaces is much higher than the kinetic friction coefficient. For the identification of the excitation mechanism and improvement of grunt noise, it is necessary to study variable parameters of rear drum brake systems on vehicle and to implement CAE analysis with stick slip model of drum brake. The aim of this study has been to find solution parameters throughout test result on vehicle and dynamo test. As a result of this study, it is generated from stick slip between rear lining and rear drum and it can be solved to reduce contact angle of lining with asymmetric and is effected not only brake drum strength but also rear brake size and brake factor.

Experiment of an ABS-type control strategy for semi-active friction isolation systems

  • Lu, Lyan-Ywan;Lin, Ging-Long;Lin, Chen-Yu
    • Smart Structures and Systems
    • /
    • v.8 no.5
    • /
    • pp.501-524
    • /
    • 2011
  • Recent studies have discovered that a conventional passive isolation system may suffer from an excessive isolator displacement when subjected to a near-fault earthquake that usually has a long-period velocity pulse waveform. Semi-active isolation using variable friction dampers (VFD), which requires a suitable control law, may provide a solution to this problem. To control the VFD in a semi-active isolation system more efficiently, this paper investigates experimentally the possible use of a control law whose control logic is similar to that of the anti-lock braking systems (ABS) widely used in the automobile industry. This ABS-type controller has the advantages of being simple and easily implemented, because it only requires the measurement of the isolation-layer velocity and does not require system modeling for gain design. Most importantly, it does not interfere with the isolation period, which usually decides the isolation efficiency. In order to verify its feasibility and effectiveness, the ABS-type controller was implemented on a variable-friction isolation system whose slip force is regulated by an embedded piezoelectric actuator, and a seismic simulation test was conducted for this isolation system. The experimental results demonstrate that, as compared to a passive isolation system with various levels of added damping, the semi-active isolation system using the ABS-type controller has the better overall performance when both the far-field and the near-fault earthquakes with different PGA levels are considered.

Rear drum brake grunt (stick-slip) noise improvement on braking during nose-dive & return condition (제동시 발생하는 리어 드럼브레이크 grunt (stick-slip) noise 개선)

  • Hong, Ilmin;Jang, Myunghoon;Kim, Sunho;Choi, Hongseok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.743-749
    • /
    • 2012
  • Grunt (Stick-slip) noise happens between rear lining and drum on braking condition while vehicle is returning to steady position after nose-dive. The study presents a new testing and analysis methods for improving brake grunt noise on vehicle. Grunt noise is called a kind of stick slip noise with below 1kHz frequency that is caused by the surfaces alternating between sticking to each other and sliding over each other with a corresponding change in friction force. This noise is typically come from that the static friction coefficient of surfaces is much higher than the kinetic friction coefficient. For the identification of the excitation mechanism and improvement of grunt noise, it is necessary to study variable parameters of rear drum brake systems on vehicle and to implement CAE analysis with stick slip model of drum brake. The aim of this study has been to find solution parameters throughout test result on vehicle and dynamo test. As a result of this study, it is generated from stick slip between rear lining and rear drum and it can be solved to reduce contact angle of lining with asymmetric and is effected not only brake drum strength but also rear brake size and brake factor.

  • PDF