• Title/Summary/Keyword: BOOST

Search Result 2,882, Processing Time 0.03 seconds

Power Factor Improvement of Single-Phase Three-level Boost Converter (단상 Three-level boost converter의 역률개선)

  • 서영조
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.384-387
    • /
    • 2000
  • In this paper Power factor correction circuit of single-phase three-level boost converter is proposed. The advantage of the proposed control scheme for three-level boost converter are low blocking voltage of each power device low THD(Total Harmonic Distortion) and high power factor. The control scheme is based on the current comparator capacitor compensator and region detector, In simulations the proposed system is validated.

  • PDF

A High Performance ZVT-PWM Boost Rectifier with Soft Switched Auxiliary Switch (스프트 스위칭 보조 스위치를 가지는 ZVT-PWM 부스트 컨버터)

  • 김윤호;김윤복;정재웅
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.265-268
    • /
    • 1998
  • This paper presents a soft-switching average current control PWM high power factor boost converter. Conventional boost ZVT-PWM converter has a disadvantage of hard-switching for auxiliary switch at turn-off. A soft switched auxiliary switch is proposed to achieve a high performance ZVT-PWM boost rectifier. The simulation and experimental results show that soft switching operation can be maintained for wide line and load range, which in turn improves the converter performance in terms of efficiency, switching noise and circuit reliability.

  • PDF

The Battery Charger Using Three-Phase AC-DC Boost Converter (3상 AC-DC Boost 컨버터를 이용한 배터리 충전장치)

  • Ha, In-Yong;Lee, Jung-Hyo;Kim, Jin-Hong;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.19-20
    • /
    • 2010
  • 본 논문에서는 3상 AC-DC Boost 컨버터를 이용한 상용차 용 배터리 충전장치를 제안한다. 논문에서 제안한 3상 AC-DC Boost 컨버터는 SVPWM 방식을 적용하였으며, ${V_q}^*$ 전압으로 전압 제어기에 보상하여 오버슈트를 개선하였으며. 정 전류 제어와, 정 전압 제어를 통하여 배터리를 충전을 수행하였다.

  • PDF

Effective WFS Tree Pruning Method using Hyperplane Partition for VectorBoost Classifier (VectorBoost 분류기에서 초평면 분할을 이용한 효율적인 WFS트리 가지치기 방법)

  • Yun, Jong-Min;Kim, Dae-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.468-470
    • /
    • 2012
  • 본 논문에서는 기존 VectorBoost기반 분류기의 문제점이었던 다중 분할 노드에서의 오판단 발생을 해결하기 위해, LDA를 이용해 학습 샘플들을 가장 잘 분리할 수 있는 최적의 초평면을 구하고, 이 초평면을 이용해 Positive샘플에서 VectorBoost의 판단율을 향상시키는 방법을 제안한다. 이러한 방법을 적용했을 때 Positive샘플들의 오판단율이 감소하는 효과를 보였으며, 불필요한 연산의 감소로 약 30%의 속도향상을 얻을 수 있었다.

Zero-Voltage-Switching Boost Converter Using a Coupled Inductor

  • Do, Hyun-Lark
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.16-20
    • /
    • 2011
  • This paper presents a zero-voltage-switching (ZVS) boost converter using a coupled inductor. It utilizes an additional winding to the boost inductor and an auxiliary diode. The ZVS characteristic of the proposed converter reduces the switching losses of the active power switches and raises the power conversion efficiency. The principle of operation and a system analysis are presented. The theoretical analysis and performance of the proposed converter were verified with a 100W experimental prototype operating at a 107 kHz switching frequency.

Bi-directional Buck-Boost DC-DC Converter for Bus Voltage Regulation (Bus 전압 레귤레이션을 위한 쌍방향 Buck-Boost DC-DC컨버터)

  • Ko, Tae-Ill;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.348-350
    • /
    • 1994
  • In this paper, bi-directional buck-boost DC-DC converter for bus regulation system is presented. This converter which has one buck and one boost topology achieves bi-directional power flow using a common power inductor and alternative power switches. By connecting the battery to bus line, it can be regulated to bus voltage and charged the battery alternatively. And as an application, a mode controller is adopted to the converter.

  • PDF

Circuit Topology and Characteristics of Three Phase PWM Noninverting Buck-Boost AC-AC Converter (3상 PWM 비반번 Buck-Boost AC-AC 컨버터의 회로구성과 특성)

  • Choi, Nam-Sup
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.116-118
    • /
    • 2005
  • In this paper, a three phase PWM noninverting Buck-Boost AC-AC converter for WCF applications is presented. The PWM noninverting Buck-Boost AC-AC converter is modelled by using vector DQ transformation whereby the basic DC characteristics equation is analytically obtained. Finally, the PSIM simulation shows the validity of the modelling and analysis.

  • PDF

A High Voltage, High Side Current Sensing Boost Converter

  • Choi, Moonho;Kim, Jaewoon
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.36-37
    • /
    • 2013
  • This paper presents high voltage operation sensing boost converter with high side current. Proposed topology has three functions which are high voltage driving, high side current sensing and low voltage boost controller. High voltage gate driving block provides LED dimming function and switch function such as a load switch of LED driver. To protect abnormal fault and burn out of LED bar, it is applied high side current sensing method with high voltage driver. This proposed configuration of boost converter shows the effectiveness capability to LED driver through measurement results.

  • PDF

Analysis of Three Phase Interleaved Boost Converter for Photovoltaic PCS (태양광 발전 PCS용 3상 인터리브드 부스트 컨버터 해석)

  • Cha, Han-Ju;Kang, Young-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.168-170
    • /
    • 2009
  • This article analyzes a three phase interleaved boost converter for photovoltaic PCS, and compares with a single phase boost converter. The advantage of this approach, such as higher efficiency and reduced input and output ripple, are demonstrated by a three phase boost converter simulation.

  • PDF

Control Characteristics of Boost input type active clamp DC-DC converter (Boost 입력형 능동 클램프 DC-DC 컨버터의 제어특성)

  • Ceong Cin-Beom;Kim Hee-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.510-513
    • /
    • 2001
  • In this paper, an application of asymmetrical duty control method to a boost input type active clamp DC-DC converter is discussed. In order to verify the discussed results, a 50W prototype converter is built and is tested. Through the experimental results an asymmetrical controlled boost input type active clamp converter is validated.

  • PDF