• Title/Summary/Keyword: BMSCs.

Search Result 57, Processing Time 0.025 seconds

Bone Morphogenic Protein-2 (BMP-2) Immobilized Biodegradable Scaffolds for Bone Tissue Engineering

  • Kim, Sung-Eun;Rha, Hyung-Kyun;Surendran, Sibin;Han, Chang-Whan;Lee, Sang-Cheon;Choi, Hyung-Woo;Choi, Yong-Woo;Lee, Kweon-Haeng;Rhie, Jong-Won;Ahn, Sang-Tae
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.565-572
    • /
    • 2006
  • Recombinant human bone morphogenic protein-2 (rhBMP-2), which is known as one of the major local stimuli for osteogenic differentiation, was immobilized on the surface of hyaluronic acid (HA)-modified poly$(\varepsilon-caprolactone)$ (PCL) (HA-PCL) scaffolds to improve the attachment, proliferation, and differentiation of human bone marrow stem cells (hBMSCs) for bone tissue engineering. The rhBMP-2 proteins were directly immobilized onto the HA-modified PCL scaffolds by the chemical grafting the amine groups of proteins to carboxylic acid groups of HA. The amount of covalently bounded rhBMP-2 was measured to 1.6 pg/mg (rhBMP/HA-PCL scaffold) by using a sandwich enzyme-linked immunosorbant assay. The rhBMP-2 immobilized HA-modified-PCL scaffold exhibited the good colonization, by the newly differentiated osteoblasts, with a statistically significant increase of the rhBMP-2 release and alkaline phosphatase activity as compared with the control groups both PCL and HA-PCL scaffolds. We also found enhanced mineralization and elevated osteocalcin detection for the rhBMP-2 immobilized HA-PCL scaffolds, in vitro.

Chondrogenic Differentiation of Bone Marrow Stromal Cells in Transforming Growth $Factor-{\beta}_{1}$ Loaded Alginate Bead

  • Park, Ki-Suk;Jin Chae-Moon;Kim, Soon-Hee;Rhee John M.;Khang Gil-Son;Han, Chang-Whan;Yang, Yoon-Sun;Kim, Moon-Suk;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.285-292
    • /
    • 2005
  • We developed alginate beads loaded with transforming growth $factor-{\beta}_{1}(TGF-{\beta}_{1})$ to examine the possible application of the scaffold and cytokine carrier in tissue engineering. In this study, bone marrow stromal cells (BMSCs) and $TGF{\beta}_{1}$ were uniformly encapsulated in the alginate beads and then cultured in vitro. The cell morphology and shape of the alginate beads were observed using inverted microscope, scanning electron microscope (SEM), histological staining and RT-PCR to confirm chondrogenic differentiation. The amount of the $TGF{\beta}_{1}$ released from the $TGF-{\beta}_{1}$ loaded alginate beads was analyzed for 28 days in vitro in a phosphate buffered saline (pH 7.4) at $37^{\circ}C$. We observed the release profile of $TGF-{\beta}_{1}$ from $TGF-{\beta}_{1}$ loaded alginate beads with a sustained release pattern for 35 days. Microscopic observation showed the open cell pore structure and abundant cells with a round morphology in the alginate beads. In addition, histology and RT-PCR results revealed the evidence of chondrogenic differentiation in the beads. In conclusion, these results confirmed that $TGF-{\beta}_{1}$ loaded alginate beads provide excellent conditions for chondrogenic differentiation.

Cell Image Processing Methods for Automatic Cell Pattern Recognition and Morphological Analysis of Mesenchymal Stem Cells - An Algorithm for Cell Classification and Adaptive Brightness Correction -

  • Lim, Kitaek;Park, Soo Hyun;Kim, Jangho;SeonWoo, Hoon;Choung, Pill-Hoon;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • Purpose: The present study aimed at image processing methods for automatic cell pattern recognition and morphological analysis for tissue engineering applications. The primary aim was to ascertain the novel algorithm of adaptive brightness correction from microscopic images for use as a potential image analysis. Methods: General microscopic image of cells has a minor problem which the central area is brighter than edge-area because of the light source. This may affect serious problems to threshold process for cell-number counting or cell pattern recognition. In order to compensate the problem, we processed to find the central point of brightness and give less weight-value as the distance to centroid. Results: The results presented that microscopic images through the brightness correction were performed clearer than those without brightness compensation. And the classification of mixed cells was performed as well, which is expected to be completed with pattern recognition later. Beside each detection ratio of hBMSCs and HeLa cells was 95% and 92%, respectively. Conclusions: Using this novel algorithm of adaptive brightness correction could control the easier approach to cell pattern recognition and counting cell numbers.

Preparation and Release Behavior of Ipriflavone-Loaded PLGA Microsphere for Tissue Engineered Bone (이프리플라본을 함유한 생분해성 PLGA 미립구의 제조 및 조직공학적 골재생을 위한 영향평가)

  • So, Jung-Won;Jang, Ji-Wook;Kim, Soon-Hee;Kim, Geun-Ah;Choi, Jin-Hee;Rhee, John-M.;Son, Young-Suk;Min, Byoung-Hyun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.26-32
    • /
    • 2009
  • The aim of this research was to prepare microparticulate systems based on poly (lactide-co-glycolide)(PLGA) for the local release of ipriflavone in order to reduce bone loss. We developed the IP loaded PLGA microspheres using relatively simple oil-in-water(O/W) solvent evaporation method. HPLC was used to perform the in vitro release test of IP and morphology of cell attached on the micro-spheres was investigated using SEM. Cytotoxicity was assayed by cell counting kit-8 (CCK-8) test. Osteogenic differential cells were analyzed by ALP activity. Through RT-PCR analysis, we observed osteocalcin, ALP, and Type I collagen mRNA expression. The release of IP in vitro was more prolonged over 42 days and IP/PLGA microspheres showed the improvement on the cell proliferation, ALP activity and RT-PCR comparing with control (only PLGA). This initial research will be used to direct future work involved in developing this composite injectable bone tissue engineering system.

IRS-2 Partially Compensates for the Insulin Signal Defects in IRS-1-/- Mice Mediated by miR-33

  • Tang, Chen-Yi;Man, Xiao-Fei;Guo, Yue;Tang, Hao-Neng;Tang, Jun;Zhou, Ci-La;Tan, Shu-Wen;Wang, Min;Zhou, Hou-De
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.123-132
    • /
    • 2017
  • Insulin signaling is coordinated by insulin receptor substrates (IRSs). Many insulin responses, especially for blood glucose metabolism, are mediated primarily through Irs-1 and Irs-2. Irs-1 knockout mice show growth retardation and insulin signaling defects, which can be compensated by other IRSs in vivo; however, the underlying mechanism is not clear. Here, we presented an Irs-1 truncated mutated mouse ($Irs-1^{-/-}$) with growth retardation and subcutaneous adipocyte atrophy. $Irs-1^{-/-}$ mice exhibited mild insulin resistance, as demonstrated by the insulin tolerance test. Phosphatidylinositol 3-kinase (PI3K) activity and phosphorylated Protein Kinase B (PKB/AKT) expression were elevated in liver, skeletal muscle, and subcutaneous adipocytes in Irs-1 deficiency. In addition, the expression of IRS-2 and its phosphorylated version were clearly elevated in liver and skeletal muscle. With miRNA microarray analysis, we found miR-33 was down-regulated in bone marrow stromal cells (BMSCs) of $Irs-1^{-/-}$ mice, while its target gene Irs-2 was up-regulated in vitro studies. In addition, miR-33 was down-regulated in the presence of Irs-1 and which was up-regulated in fasting status. What's more, miR-33 restored its expression in re-feeding status. Meanwhile, miR-33 levels decreased and Irs-2 levels increased in liver, skeletal muscle, and subcutaneous adipocytes of $Irs-1^{-/-}$ mice. In primary cultured liver cells transfected with an miR-33 inhibitor, the expression of IRS-2, PI3K, and phosphorylated-AKT (p-AKT) increased while the opposite results were observed in the presence of an miR-33 mimic. Therefore, decreased miR-33 levels can up-regulate IRS-2 expression, which appears to compensate for the defects of the insulin signaling pathway in Irs-1 deficient mice.

Preparation and Characterization of Sponge Using Demineralized Bone Particle (탈미네랄화된 골분을 이용한 스폰지의 제조 및 특성 분석)

  • Jang, Ji-Wook;Baek, Mi-Ock;Kim, Soon-Hee;Choi, Jin-Hee;Yang, Jae-Chan;Hong, Hyun-Hye;Hong, Hee-Kyung;Rhee, John-M.;Min, Byoung-Hyun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.104-110
    • /
    • 2009
  • Demineralized boneparticle (DBP) has been widely used as and a powerful promoter of new bone growth. In this study, DBP sponges were chemically crosslinked and characterized for the potential application of tissue engineered scaffolds. The DBP sponges prepared by crosslinking with EDC. 0.1, 0.2 or 0.3% pepsin was applied to DBP dissolved in 3% (v/v) acetic acid aqueous solution for 48 hrs. The prepared sponges were crosslinked by 1, 5, 10, 50 or 100 mM of EDC solution concentration and then were lyophilized. The DBP sponges were characterized by SEM, FT-IR and DSC and analyzed in terms of their porosity and water absorption ability. The cellular viability and proliferation were assayed by MTT assay. Our investigation revealed that 0.2$\sim$0.3% of pepsin and 50$\sim$100 mM of EDC produced DBP sponges with good physical characteristics. In conclusion, DBP sponge prepared under these conditions is potentially useful for the applications of tissue construction.

Adipose Tissue-Derived Mesenchymal Stromal Cells from Ex-Morbidly Obese Individuals Instruct Macrophages towards a M2-Like Profile In Vitro

  • Daiana V. Lopes Alves;Cesar Claudio-da-Silva;Marcelo C. A. Souza;Rosa T. Pinho;Wellington Seguins da Silva;Periela S. Sousa-Vasconcelos;Radovan Borojevic;Carmen M. Nogueira;Helio dos S. Dutra;Christina M. Takiya;Danielle C. Bonfim;Maria Isabel D. Rossi
    • International Journal of Stem Cells
    • /
    • v.16 no.4
    • /
    • pp.425-437
    • /
    • 2023
  • Obesity, which continues to increase worldwide, was shown to irreversibly impair the differentiation potential and angiogenic properties of adipose tissue mesenchymal stromal cells (ADSCs). Because these cells are intended for regenerative medicine, especially for the treatment of inflammatory conditions, and the effects of obesity on the immunomodulatory properties of ADSCs are not yet clear, here we investigated how ADSCs isolated from former obese subjects (Ex-Ob) would influence macrophage differentiation and polarization, since these cells are the main instructors of inflammatory responses. Analysis of the subcutaneous adipose tissue (SAT) of overweight (OW) and Ex-Ob subjects showed the maintenance of approximately twice as many macrophages in Ex-Ob SAT, contained within the CD68+/FXIII-A- inflammatory pool. Despite it, in vitro, coculture experiments revealed that Ex-Ob ADSCs instructed monocyte differentiation into a M2-like profile, and under inflammatory conditions induced by LPS treatment, inhibited HLA-DR upregulation by resting M0 macrophages, originated a similar percentage of TNF-α+ cells, and inhibited IL-10 secretion, similar to OW-ADSCs and BMSCs, which were used for comparison, as these are the main alternative cell types available for therapeutic purposes. Our results showed that Ex-Ob ADSCs mirrored OW-ADSCs in macrophage education, favoring the M2 immunophenotype and a mixed (M1/M2) secretory response. These results have translational potential, since they provide evidence that ADSCs from both Ex-Ob and OW subjects can be used in regenerative medicine in eligible therapies. Further in vivo studies will be fundamental to validate these observations.