• Title/Summary/Keyword: BLAST searching

Search Result 25, Processing Time 0.024 seconds

Study on MPI-based parallel sequence similarity search in the LINUX cluster (클러스터 환경에서의 MPI 기반 병렬 서열 유사성 검색에 관한 연구)

  • Hong, Chang-Bum;Cha, Jeoung-Ho;Lee, Sung-Hoon;Shin, Seung-Woo;Park, Keun-Joon;Park, Keun-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.69-78
    • /
    • 2006
  • In the field of the bioinformatics, it plays an important role in predicting functional information or structure information to search similar sequence in biological DB. Biolrgical sequences have been increased dramatically since Human Genome Project. At this point, because the searching speed for the similar sequence is highly regarded as the important factor for predicting function or structure, the SMP(Sysmmetric Multi-Processors) computer or cluster is being used in order to improve the performance of searching time. As the method to improve the searching time of BLAST(Basic Local Alighment Search Tool) being used for the similarity sequence search, We suggest the nBLAST algorithm performing on the cluster environment in this paper. As the nBLAST uses the MPI(Message Passing Interface), the parallel library without modifying the existing BLAST source code, to distribute the query to each node and make it performed in parallel, it is possible to easily make BLAST parallel without complicated procedures such as the configuration. In addition, with the experiment performing the nBLAST in the 28 nodes of LINUX cluster, the enhanced performance according to the increase in the number of the nodes has been confirmed.

  • PDF

NBLAST: a graphical user interface-based two-way BLAST software with a dot plot viewer

  • Choi, Beom-Soon;Choi, Seon Kang;Kim, Nam-Soo;Choi, Ik-Young
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.36.1-36.6
    • /
    • 2022
  • BLAST, a basic bioinformatics tool for searching local sequence similarity, has been one of the most widely used bioinformatics programs since its introduction in 1990. Users generally use the web-based NCBI-BLAST program for BLAST analysis. However, users with large sequence data are often faced with a problem of upload size limitation while using the web-based BLAST program. This proves inconvenient as scientists often want to run BLAST on their own data, such as transcriptome or whole genome sequences. To overcome this issue, we developed NBLAST, a graphical user interface-based BLAST program that employs a two-way system, allowing the use of input sequences either as "query" or "target" in the BLAST analysis. NBLAST is also equipped with a dot plot viewer, thus allowing researchers to create custom database for BLAST and run a dot plot similarity analysis within a single program. It is available to access to the NBLAST with http://nbitglobal.com/nblast.

Optimization of structural and mechanical engineering problems using the enriched ViS-BLAST method

  • Dizangian, Babak;Ghasemi, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.613-626
    • /
    • 2021
  • In this paper, an enhanced Violation-based Sensitivity analysis and Border-Line Adaptive Sliding Technique (ViS-BLAST) will be utilized for optimization of some well-known structural and mechanical engineering problems. ViS-BLAST has already been introduced by the authors for solving truss optimization problems. For those problems, this method showed a satisfactory enactment both in speed and efficiency. The Enriched ViS-BLAST or EVB is introduced to be vastly applicable to any solvable constrained optimization problem without any specific initialization. It uses one-directional step-wise searching technique and mostly limits exploration to the vicinity of FNF border and does not explore the entire design space. It first enters the feasible region very quickly and keeps the feasibility of solutions. For doing this important, EVB groups variables for specifying the desired searching directions in order to moving toward best solutions out or inside feasible domains. EVB was employed for solving seven numerical engineering design problems. Results show that for problems with tiny or even complex feasible regions with a larger number of highly non-linear constraints, EVB has a better performance compared to some records in the literature. This dominance was evaluated in terms of the feasibility of solutions, the quality of optimum objective values found and the total number of function evaluations performed.

Differentially Expressed Genes of Potentially Allelopathic Rice in Response against Barnyardgrass

  • Junaedi, Ahmad;Jung, Woo-Suk;Chung, Ill-Min;Kim, Kwang-Ho
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.231-236
    • /
    • 2007
  • Differentially expressed genes(DEG) were identified in a rice variety, Sathi, an indica type showing high allelopathic potential against barnyardgrass(Echinochloa crus-galli(L.) Beauv. var. frumentaceae). Rice plants were grown with and without barnyardgrass and total RNA was extracted from rice leaves at 45 days after seeding. DEG full-screening was performed by $GeneFishing^{TM}$ method. The differentially expressed bands were re-amplified and sequenced, then analyzed by Basic Local Alignment Search Tool(BLAST) searching for homology sequence identification. Gel electrophoresis showed nine possible genes associated with allelopathic potential in Sathi, six genes(namely DEG-1, 4, 5, 7, 8, and 9) showed higher expression, and three genes(DEG-2, 3 and 6) showed lower expression as compared to the control. cDNA sequence analysis showed that DEG-7 and DEG-9 had the same sequence. From RT PCR results, DEG-6 and DEG-7 were considered as true DEG, whereas DEG-1, 2, 3, 4, 5, and 8 were considered as putative DEG. Results from blast-n and blast-x search suggested that DEG-1 is homologous to a gene for S-adenosylmethionine synthetase, DEG-2 is homologous to a chloroplast gene for ribulose 1,5-bisphosphate carboxylase large subunit, DEG-8 is homologous to oxysterol-binding protein with an 85.7% sequence similarity, DEG-5 is homologous to histone 2B protein with a 47.9% sequence similarity, DEG-6 is homologous to nicotineamine aminotransferase with a 33.1% sequence similarity, DEG-3 has 98.8% similarity with nucleotides sequence that has 33.1% similarity with oxygen evolving complex protein in photosystem II, DEG-7 is homologous to nucleotides sequence that may relate with putative serin/threonine protein kinase and putative transposable element, and DEG-4 has 98.8% similarity with nucleotides sequence for an unknown protein.

  • PDF

New Approach to the Analysis of Palindromic Structure in Genome Sequences

  • Kim, Seok-Won;Lee, Yong-Seok;Choi, Sang-Haeng;Chae, Sung-Hwa;Kim, Dae-Won;Park, Hong-Seog
    • Genomics & Informatics
    • /
    • v.4 no.4
    • /
    • pp.167-169
    • /
    • 2006
  • PABAP (Palindrome Analysis by BLAST Program) is an analysis system that identifies palindromic sequences from a large genome sequence up to several megabases long. It uses NCBI BLAST as a searching engine, and data processing such as alignment filtration and detection of inverted repeats which satisfy user-defined parameters is performed by manipulating data after populating into a MySQL database. PABAP outperforms publicly available palindrome search program in that it can detect large palindrome with internal spacer at a faster speed from bacterial genomes. It is a standalone application and is freely available for noncommercial users.

Algorithm for Predicting Functionally Equivalent Proteins from BLAST and HMMER Searches

  • Yu, Dong Su;Lee, Dae-Hee;Kim, Seong Keun;Lee, Choong Hoon;Song, Ju Yeon;Kong, Eun Bae;Kim, Jihyun F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1054-1058
    • /
    • 2012
  • In order to predict biologically significant attributes such as function from protein sequences, searching against large databases for homologous proteins is a common practice. In particular, BLAST and HMMER are widely used in a variety of biological fields. However, sequence-homologous proteins determined by BLAST and proteins having the same domains predicted by HMMER are not always functionally equivalent, even though their sequences are aligning with high similarity. Thus, accurate assignment of functionally equivalent proteins from aligned sequences remains a challenge in bioinformatics. We have developed the FEP-BH algorithm to predict functionally equivalent proteins from protein-protein pairs identified by BLAST and from protein-domain pairs predicted by HMMER. When examined against domain classes of the Pfam-A seed database, FEP-BH showed 71.53% accuracy, whereas BLAST and HMMER were 57.72% and 36.62%, respectively. We expect that the FEP-BH algorithm will be effective in predicting functionally equivalent proteins from BLAST and HMMER outputs and will also suit biologists who want to search out functionally equivalent proteins from among sequence-homologous proteins.

Construction of BLAST Server for Mollusks (연체동물 전용 서열 블라스트 서버구축)

  • Lee, Yong-Seok;Jo, Yong-Hun;Kim, Dae-Soo;Kim, Dae-Won;Kim, Min-Young;Choi, Sang-Haeng;Yon, Jei-Oh;Byun, In-Sun;Kang, Bo-Ra;Jeong, Kye-Heon;Park, Hong-Seog
    • The Korean Journal of Malacology
    • /
    • v.20 no.2
    • /
    • pp.165-169
    • /
    • 2004
  • The BLAST server for the mollusk was constructed on the basis of the Intel Server Platform SC-5250 dual Xeon 2.8 GHz cpu and Linux operating system. After establishing the operating system, we installed NCBI (National Center for Biotechnology Information) WebBLAST package after web server configuration for cgi (common gate interface) (http://chimp.kribb.re.kr/mollusks). To build up the stand alone blast, we conducted as follows: First, we downloaded the genome information (mitochondria genome information), DNA sequences, amino acid sequences related with mollusk available at NCBI. Second, it was translated into the multifasta format that was stored as database by using the formatdb program provided by NCBI. Finally, the cgi was used for the Stand Alone Blast server. In addition, we have added the vector, Escherichia coli, and repeat sequences into the server to confirm a potential contamination. Finally, primer3 program is also installed for the users to design the primer. The stand alone BLAST gave us several advantages: (1) we can get only the data that agree with the nucleotide sequence directly related with the mollusks when we are searching BLAST; (2) it will be very convenient to confirm contamination when we made the cDNA or genomic library from mollusks; (3) Compared to the current NSBI, we can quickly get the BLAST results on the mollusks sequence information.

  • PDF

Gene Sequences Clustering for the Prediction of Functional Domain (기능 도메인 예측을 위한 유전자 서열 클러스터링)

  • Han Sang-Il;Lee Sung-Gun;Hou Bo-Kyeng;Byun Yoon-Sup;Hwang Kyu-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1044-1049
    • /
    • 2006
  • Multiple sequence alignment is a method to compare two or more DNA or protein sequences. Most of multiple sequence alignment tools rely on pairwise alignment and Smith-Waterman algorithm to generate an alignment hierarchy. Therefore, in the existing multiple alignment method as the number of sequences increases, the runtime increases exponentially. In order to remedy this problem, we adopted a parallel processing suffix tree algorithm that is able to search for common subsequences at one time without pairwise alignment. Also, the cross-matching subsequences triggering inexact-matching among the searched common subsequences might be produced. So, the cross-matching masking process was suggested in this paper. To identify the function of the clusters generated by suffix tree clustering, BLAST and CDD (Conserved Domain Database)search were combined with a clustering tool. Our clustering and annotating tool consists of constructing suffix tree, overlapping common subsequences, clustering gene sequences and annotating gene clusters by BLAST and CDD search. The system was successfully evaluated with 36 gene sequences in the pentose phosphate pathway, clustering 10 clusters, finding out representative common subsequences, and finally identifying functional domains by searching CDD database.

Identification Based on Computational Analysis of rpoB Sequence of Bacillus anthracis and Closely Related Species (Bacillus anthracis와 그 유연종의 rpoB 유전자 컴퓨터 분석을 통한 동정)

  • Kim, Kyu-Kwang;Kim, Han-Bok
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.333-338
    • /
    • 2008
  • Computational analysis of partial rpoB gene sequence (777 bp) was done in this study to identify B. anthracis and its closely related species B. cereus and B. thuringiensis. Sequence data including 17 B. anthracis strains, 9 B. cereus strains, and 7 B. thuringiensis strains were obtained by searching databases. Those sequences were aligned and used for other computational analysis. B. anthracis strains were identificated by in silico restriction enzyme digestion. B. cereus and B. thuringiensis were not segregated by this method. Those sequencing and BLAST search were required to distinguish the two. In actual identification tests, B. anthracis strains could be identified by PCR-RFLP, and B. cereus and B. thuringiensis strains were distinguished by BLAST search with reliable e-value. In this study fast and accurate method for identifying three Bacillus species, and flow chart of identification were developed.

Control Efficacy of Phloretin Isolated from Apple Fruits Against Several Plant Diseases

  • Shim, Sang-Hee;Jo, Su-Jung;Kim, Jin-Cheol;Choi, Gyung-Ja
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.280-285
    • /
    • 2010
  • In the course of a searching natural antifungal compounds from plant sources, we found that the methanol extract ($3,000\;{\mu}g/ml$) of Malus domestica fruits had potential of control against rice blast (Magnaporthe grisea) and tomato late blight (Phytophthora infestans). Under bioassay-guided purification, we isolated phloretin, a phenolic compound, with in vivo antifungal activity against M. grisea. By 1-day protective application of phloretin ($500\;{\mu}g/ml$), the compound strongly inhibited the disease development of M. grisea and P. infestans on rice and tomato seedlings, respectively. And red pepper anthracnose caused by Colletotrichum coccodes also was moderately suppressed. However, rice sheath blight (Rhizoctonia solani AG1), and barley powdery mildew (Blumeria graminis f. sp. hordei) were hardly controlled. In addition, the compound showed in vitro antifungal activity against some plant pathogenic fungi including Phytophthora capsici, Alternaria panax, Sclerotinia sclerotiorum, R. solani AG4, and M. grisea. This is the first report on the antifungal activity of phloretin against plant pathogenic fungi.