• 제목/요약/키워드: BIPV module

검색결과 103건 처리시간 0.03초

5kW급 투광형 박막 BIPV시스템의 실증연구 (Case Study on 5kWp Transparent Thin-Film BIPV System)

  • 안영섭;김성태;이성진;송종화;황상근;윤종호
    • 한국태양에너지학회 논문집
    • /
    • 제30권4호
    • /
    • pp.29-35
    • /
    • 2010
  • This study has been carried out empirical research on Transparent Thin-film BIPV modules, BIPV modules installed on the exterior of the building are applied a laminated module 1kWp, double-glazing module 3kWp and triple-glazing module 1kWp. Applied to the total capacity of BIPV modules are 5kWp. In this study, design and construction process of BIPV systems is presented. In addition, through monitoring of the BIPV system, the temperature and the power characteristics of each module were analyzed. During the measurement period, the module temperature measurement results, the maximum surface temperature of $51.5^{\circ}C$ triple-glazing BIPV module showed the highest, followed by double-glazing BIPV module $49.1^{\circ}C$, $44.7^{\circ}C$ laminated modules, respectively. Power output results, the daily average double-layer modules showed 4.10kWh/day, triple-glazing module 1.57kWh, respectively 1.81kWh laminated modules. In particular, the power efficiency of triple-glazing BIPV module was lower than the power efficiency of the laminated BIPV module. This phenomenon is considered to be affected by the module temperature. In the future, BIPV modules in this study the relationship between module temperature and power characteristics plans to identify.

건물 외벽 환경을 고려한 BIPV SU(string unit) module에 관한 연구 (A Study for BIPV string unit module)

  • 이길송;김병만;신현우;윤종호;유권종;강기환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.154-157
    • /
    • 2008
  • In korea, PV business has been growing fast since 2000. There are many ways to build PV module Among them, BIPV system(BIPV : building integrated system) using PV modules as external wall has been carried out research on and invested much. I suggest another way to apply the BIPV system BIPV SU(string unit) module is easier and faster to be installed and more economical than other BIPV module. In this paper. I will show how to make, and how to install this BIPV SU module.

  • PDF

도심지 복합시설 BIPV 모듈의 특성을 고려한 태양광발전시스템 어레이설계 실증 연구 (An Experimental Study on the Array Design of BIPV System in Complex Facility of Downtown)

  • 이안기;김재철;최옥만;강병욱
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.454-459
    • /
    • 2018
  • The BIPV system must be designed to reflect the architectural and electrical characteristics simultaneously because it replaces the role of the exterior material of the building, which makes it difficult to design the BIPV. The thin film type BIPV module has an electrical characteristic that the open voltage is higher and the short circuit current is lower than that of the crystalline type BIPV module. However, there are many differences in the design of the array, the collector distribution board, and the inverter in the system configuration since the crystal type BIPV module has the opposite feature. In this study, a crystalline BIPV module and a thinfilm BIPV module were applied to actual buildings. As a result, the elements to be considered in designing BIPV system were derived, and the architectural and electrical characteristics were mutually analyzed.

건물외피용 태양광발전 BIPV 모듈 개발 연구 (Development of Building Integrated PV(BIPV) module for the replacement of commercial building envelope materials)

  • 윤종호;김종일;이길송;유권종
    • KIEAE Journal
    • /
    • 제4권3호
    • /
    • pp.113-119
    • /
    • 2004
  • As Building Integrated Photovoltaic(BIPV) system replaces the conventional building finishing materials with PV modules, two function of electricity generation and building envelope can be expected. Therefore BIPV can be a good alternative technology for the 21 century environment-friendly buildings. The objective of this paper is to develope BIPV modules for a commercial buildings of which structure is mainly light-weight, curtain wall system. Two types of module are developed for a opaque part and a transparent part of building envelope. Current technology level and market status of Korea determines the configuration of developed BIPV modules. Architectural considerations for the integration of PV module to building envelope such as building structure, construction type, safety, regulation, maintenance etc. have been carefully reflected from the early stage of BIPV module design. Especially the survey result of current building envelope materials determines the size of unit BIPV modules and a unique cladding method for PV module installation is developed. Trial product of BIPV modules and cladding hardwares are manufactured and sample construction details for a demonstration building are proposed.

단열성능 개선을 위한 진공유리가 부착된 BIPV Module 개발에 관한 연구 (A Study on the Development of BIPV Module Equipped with Vacuum Glass for Improved Thermal Performance)

  • 엄재용;이현수;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제34권2호
    • /
    • pp.44-52
    • /
    • 2014
  • The main purpose of this paper is to develop the new BIPV module equipped with vacuum glass. Beacuse BIPV module has a function of architectural materials, thermal and PV performance should be simultaneously evaluated. To improve the thermal performance of BIPV module, this study developed BIPV module equipped with a vacuum glass. Those BIPV module was tested with a variety of encapsulants. The results are as follows. When a vacuum glass is laminated with EVA or PVB, it was broken. The reason seems to be bending by unbalance of heat expansion with center and edge of vacuum glass. In case of lamination with resin, there is no breakage and no bending of vacuum glass. Because production was conducted in low pressure & low temperature conditions. And it was also found that vacuum glass does not interfere with the UV curing process.

BIPV시스템의 건물적용 실증에 대한 구성요소별 발전성능 분석 (A study on the performance of various BIPV modules applied in a real building demonstration)

  • 이상문;허정호
    • 한국태양에너지학회 논문집
    • /
    • 제36권2호
    • /
    • pp.53-63
    • /
    • 2016
  • Building Integrated Photovoltaic (BIPV) is one of the best ways to generate electric power using the solar energy, which is clean and inexhaustible energy resources. The most of BIPV modules have the form of GtoG (Glass to Glass) photovoltaic in building applications. Degradation leading to failure in photovoltaic modules is very important factor in BIPV modules. This paper analyzed the performance of various BIPV modules through outdoor exposure tests. Performance of three BIPV modules(c-Si type, a-Si type and DSSC type) with three installation angles influenced by sun light, outdoor temperature, and wind velocity was monitored and analyzed. As a result, c-Si type BIPV module outperforms other BIPV modules(a-Si type). In terms of power efficiency of the module, the installed angle of $45^{\circ}$ is better than others(90 degree, 0 degree). In addition, more realistic data of various BIPV system performance could be available through the field test and integrated building test. In this study, relationship of the BIPV system is identified module's installation angle, power generation, architectural performance, etc.

스팬드럴 적용 BIPV의 후면 열 특성에 관한 연구 (A Study on the Thermal Characteristics of BIPV Applied on Curtain Wall Spandrel)

  • 이상길;강태우;장한빈;강기환;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제32권6호
    • /
    • pp.120-126
    • /
    • 2012
  • BIPV is applied to buildings in various forms. However, there are some aspects of consideration in applying PV systems in buildings, such as attaching methods, PV electrical efficiency, appearance and so on. BIPV can be installed on curtain wall spandrel as finishing material, which may combine with insulation. The thermal characteristic of spandrel with BIPV has rarely been studied; the temperature of air space between PV module and insulation layer affects both the electrical behavior of PV module and the energy load in a building. This paper aims to analyse the temperature variation of the layers in BIPV spandrels. In this paper, the temperature of layers, including the air space and PV module, was measured for three different type of BIPV applications on spandrel. The results show that the temperature of air layer for the spandrel with G/G(2) type BIPV module on October was the highest among other months.

현장 실험을 통한 Sputter Coating 컬러 BIPV 모듈의 발전성능 평가 (Performance Assessment of Sputter-Coating-Colored BIPV Modules Through Field Test)

  • 이효문;윤종호;김현일;이건환
    • 한국태양에너지학회 논문집
    • /
    • 제40권5호
    • /
    • pp.1-12
    • /
    • 2020
  • To assess the performance and characteristics of colored building-integrated photovoltaic (BIPV) modules, a comparative assessment of empirical performance was conducted on colored BIPV modules (gray, blue, and orange) and general BIPV module. These modules were installed on the south-facing slope (30°) for comparative assessment through a field test. Monitoring data were collected every 10 min from December 20, 2019 to January 21, 2020 and used to performance and characteristics analysis. Performance ratio and module efficiency were utilized during performance indexing for comparative assessment. For general BIPV modules, the operational efficiency was analyzed at 16.63%, whereas for colored BIPV modules, 13.70% (gray), 15.12 % (blue), and 14.49% (orange) were analyzed. It was discovered that the efficiency reduction caused by transmission losses owing to the application of colored cover glasses were 17.74% (gray), 9.05% (blue), and 9.86 % (orange), under field testing conditions. These values turned on an additional 7% reduction in efficiency for gray BIPV modules, compared to the degradation resulting from transmission drop (gray: 10.87%, blue: 8.99%, and orange: 9.02%) calculated using the efficiency of each module in standard test conditions (STC). Performance ratio analysis resulted in the following values: 0.92 for general BIPV modules, and 0.85 (gray), 0.91 (blue), and 0.91 (orange) for colored BIPV modules. As demonstrated by the above results, modules with a colored cover glass may differ in their operational performance depending on their color, unlike general modules. Therefore, in addition to the performance evaluation under STC, additional factors of degradation require consideration through field test.

BIPV Module을 적용한 친환경 전동 블라인드에 관한 연구 (A Study on the Eco-environmental Blind using BIPV Module Applications)

  • 신현우;윤종호;이길송;김병만;장진호;강기환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.105-106
    • /
    • 2008
  • In korea, PV business has been growing fast since 2000. There are many ways to build PV System. Among them, BIPV(Building Integrated Photovoltaic) System using PV Modules as external wall has been carried out research on and invested much. Thus I will suggest another way to apply the BIPV System. This System is Eco System designed to consume little energy working the blind by the power that the BIPV System generates. I will show you how to make and apply this BIPV System.

  • PDF

Mock-up실험을 통한 BIPV Module의 외벽 성능평가 (A Experimental Study on Finished Envelope Performance of BIPV Module)

  • 이소미;윤철;이용호
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.251-256
    • /
    • 2008
  • Nowaday, The Sustainable Development about global environment is the most important subject. In urban environment, a variety of the nature energy utilization such as the solar energy are the most efficient solution to solve this issue. One of these efficient solutions, a photovoltaic system using sunlight has been introduced to the building with an advantage such as cost-effective, safe for using and good for environment friendly in light with energy utilization. The BIPV is one of the most interesting and promisingly possibilities of an active use of solar energy at the building. Therefore the goal of this study is to get securing the application information of BIPV as finished envelope. The purpose of this study is to investigate the current performance measurement methods of BIPV module and to measure the performance of BIPV module by mock-up tests.

  • PDF