• Title/Summary/Keyword: BIPV

Search Result 226, Processing Time 0.034 seconds

A Study on the Optimization of Color Module BIPV Architectural Design Using BIM - Based on the data of Seoul surveyed solar radiation - (BIM을 활용한 컬러모듈 BIPV 건축 설계 최적화 방안 연구 - 서울 지역 실증 일사량 데이터 중심으로 -)

  • Jeon, Hyun-Woo;Yoon, Hea-Kyung;Park, Suh-Jun
    • Journal of KIBIM
    • /
    • v.9 no.3
    • /
    • pp.19-29
    • /
    • 2019
  • Currently, BIPV (Building Integrated Photovoltaic) design technology lacks analysis function at the planning stage, and there is a lack of understanding and reliability of BIPV design method and system for building designers. To design and consider various building integrated solar design alternatives, the color of building integrated solar is often monotonous or does not match the design direction of the building. In this study, architectural designers can select various color modules in the planning and design process of the building and analyze the characteristics of color module solar cells and compare and analyze the actual solar radiation and predicted solar radiation in Republic ofKorea Seoul to reduce the confusion of design methods. By building a BIM design integrated system that can prove the quality of the building and analyze the shading analysis and power generation performance architecturally, it can improve the reliability of color module solar cell applicability that can express aesthetics in buildings and the predicted solar power generation capacity of each region. In the initial design stage, based on the empirical data of the BIPV system, it is possible to analyze the power generation performance for each installation angle and installation direction by analyzing the surrounding environment and the installation area, and accurately determine the appropriateness of the design accordingly.

Metal Oxide Multi-Layer Color Glass by Radio Frequency Magnetron Sputtering for Building Integrated Photovoltaic System (RF Magnetron 스퍼터링 공정을 이용한 BIPV용 산화 금속 다중층 컬러 유리 구현 기술 연구)

  • Gasonoo, Akpeko;Ahn, Hyeon-Sik;Kim, Min-Hoi;Lee, Jae-Hyun;Choi, Yoon-seuk
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1056-1061
    • /
    • 2018
  • In this study, we propose the structure of color glass for BIPV (Building Integrated Photovoltaic System) and develop process technology to realize it. It was verified through computer simulation based on wave optics that two different kinds of metal oxide thin films with different refractive indices could be integrated to realize different colors with good transmittance. To fabricate the structure, we used RF Magnetron deposition method to achieve the target thickness uniformly. The optical analysis of the samples was carried our by comparing with the results of computer simulations and it was found that this technique can be stably implemented on lab scale. The stability test over weeks was confirmed at room temperature. This method is expected to be very useful in BIPV buildings.

Pseudo-BIPV Style Rooftop-Solar-Plant Implementation for Small Warehouse Case

  • Cha, Jaesang;Cho, Ju Phil
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.187-196
    • /
    • 2022
  • In this paper, we propose an example of designing and constructing a roof-type solar power plant structure equipped with a Pseudo-BIPV (Building-Integrated Photovoltaic) shape suitable for use as a roof of a small warehouse with a sandwich-type panel structure. As the characteristics of the roof-type solar power generation facility to be installed in the small warehouse proposed in this study, the shape of the roof is not a general A type, but a right-angled triangle shape with the slope is designed to face south. We chose a structure in which an inverter for one power plant and a control facility are linked by grouping several roofs of buildings. In addition, the height of the roof structure is less than 20 cm from the floor, and it has a shape similar to that of the BIPV, so it is building-friendly because it is almost in close contact with the roof. At the same time, the roof creates a reflective light source due to the white color. By linking this roof with a double-sided solar panel, we designed it to obtain both the advantage of the roof-friendliness and the advantage of efficiency improvement for the electric power generation based on the double-sided panel. Compared to the existing solar power generation facilities using A-shaped cross-sectional modules, the power generation efficiency of roofs in this case is increased by more than 11%, which we can confirm, through the comparison analysis of monitoring data between power plants in the same area. Therefore, if the roof-type solar structure suitable for the small warehouse we have presented in this paper is used, the facilities of electric power generation is eco-friendly. Further it is easier to obtain facility certification compared to the BIPV, and improved capacity of the power generation can be secured at low material cost. It is believed that the roof-type solar power generation facility we proposed can be usefully used for warehouse or factory-based smart housing. Sensor devices for monitoring, CCTV monitoring, or safety and environment management, operating in connection with the solar power generation facilities, are linked with the Internet of Things (IoT) solution, so they can be monitored and controlled remotely.

Research on color coating technology of solution process method using spin coating (스핀 코팅을 이용한 용액 공정 방식의 컬러 코팅 기술 연구)

  • Seongmin Lim;Hyeon-Sik Ahn;Yoonseuk Choi
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.78-84
    • /
    • 2023
  • In this paper, front color glass for Building Integrated Photovoltaic (BIPV) system was implemented by spin coating method using color solution. Solutions suitable for color solutions were investigated using pearlescent pigments and various solutions to implement color glass. One of investigated solutions, NOA 63 and NOA 65, which are ultraviolet light curing agents, were able to implement color glass with superior coating properties and color reproducibility than other solutions. Color glass realized by spin coating with a NOA 65 based color solution showed high transmittance of 86% in the visible and near-infrared wavelength bands, and the change in optical properties of color glass over time was insignificant, making it a suitable material for realizing color glass for BIPV Suitable as a color solution. The solution process method using the spin coating method is expected to facilitate the manufacturing process of front color glass for BIPV as it can produce color glass more easily and quickly than the existing physical deposition method or color glass manufacturing process using nanoparticles.

A Study on the Manufacture of Single Axis Tracking Solar Power Generation System for BIPV (BIPV를 위한 단축 구동 태양광 전력 발생장치 제작에 관한 연구)

  • Cho, Jae-Cheol;Lee, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.335-338
    • /
    • 2012
  • Recently, the energy has been used much more than ever, but there has been many problems including atmospheric pollution. So we need alternative energy resources, which are solar heat, solar light, wind power, small water power, etc. The field, which is most popular these days, is the energy source by solar light which transform electric energy using the solar cell and it is available with many researches. In this paper, we manufactured the solar power generation system over 90W using solar module which was 9.90V for Voc, 0.93 A for Isc, 8.64 V for Vmp, 0.75 A for Imp, 6.5 W for power. System was controlled by step motor with worm gear to operate optimum condition between $0^{\circ}{\sim}70^{\circ}$ angle. This system was very effective in tracking space use because it need less space than general solar module.

Electrical Characteristics of Semi-transparent BIPV Module with Backside Glass (후면 유리종류에 따른 반투과 BIPV모듈의 전기적 특성)

  • Kim, Ha-Ryeon;Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Kim, Jun-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1300-1301
    • /
    • 2011
  • The purpose of this study is to analyze the electrical performance characteristics of semi-transparent BIPV modules. This study dealt with four different types of semi-transparent PV modules depending on the backside glass material, such as clear glass, bronze glass, reflecting glass and low-e glass. The monitoring data shows that the PV module temperature and solar radiation were closely related to the electrical performance of the modules.

  • PDF

A Study on the Comparison of the PV Module Generation from Daylight Irradiation and Indoor Lighting Savings with Lighting Simulation (일사량 분석을 통한 PV모듈 발전량과 시뮬레이션을 이용한 실내 조명에너지 절감량 비교)

  • Park, Yoon-Min;Hong, Seong-Kwan;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.17-24
    • /
    • 2010
  • Recently, BIPV system which is good enough for maintenance and functions with the shading system is being used. However BIPV system with the shading system is different from existing PV module because of using flexible PV module. Prior to the application of the BIPV system, the clearness index was calculated by Erbs et al.(1982) and analyzed for the amount of electric power generation of sky irradiance with measured data. To predict electric lighting energy savings in daylit space, electric lighting power savings with amount of PV module electric power generation was compared by using Relux 2010 software in this study.

The Basic Study on Economic Evaluation of Distributed Energy System Installed in Hospital (병원건물 분산에너지시스템 도입에 따른 경제성분석)

  • Hong, Won-Pyo;Kim, Hyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1136_1138
    • /
    • 2009
  • This paper gives a basic Energy performance data of micro gas turbine and Renewable Energy(BIPV and Solar Collector System) installed in Hospital Building. The efficiency of solar collector and BIPV system was 30%, 10% individually, and lower than micro gas turbines. Micro gas turbines are small gas turbines that burn gaseous and liquid fuels to produce a high-energy exhaust gas and to generate the electrical power. Recently the size range for micro gas turbines is form 30 to 500kW and power-only generation or in combined heat and power(CHP) systems. If micro gas turbine was operated only for electric energy, the efficiency was about 30%, but for combined heat and power, the efficiency was about 90%. Finally, installed in large hospital, Micro gas turbine system was operated to CHP mode, was high-efficiency system than Solar collector and BIPV system.

  • PDF

A study on the efficiency of sloped type Double-skin System for the Curtailment of Heating/Cooling Load (냉난방부하 절감을 위한 경사형 이중외피시스템의 성능연구)

  • An, Hyung-Jun;Kim, Young-Tag;Choi, Chang-Ho;Lee, Hyn-Woo
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.77-87
    • /
    • 2004
  • BIPV or double skin applied to the surface of the building, power and thermal load cannot both be increased. In the case of BIPV, because it is applied to the facade, incident solar energy decreases and efficiency drops off. The system in this paper complements these disadvantages and aims to decrease the heating & cooling load by transforming solar energy to electronic and thermal energy. The research in this paper is about the applicability of the clear PV attached double-skin system. And the PV electronic generation and the factors that affect the heating & cooling load such as the daily radiation, sun shading ratio, heating & cooling load, daylight luminance and glare distributions in the building are simulated.

Analysis of Performance of Building Integrated PV System into Cold Facade (건물일체형 Cold Facade PV 시스템의 성능 분석)

  • Kim, Hyun-Il;Kang, Gi-Hwan;Park, Kyung-Eun;Yu, Gwon-Jong;Suh, Seung-Jik
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1104-1105
    • /
    • 2008
  • This paper presents the assesment of experimented data and estimated data for electrical and thermal performance evaluation of building integrated photovoltaic(BIPV) system of cold facade type. BIPV module is used to estimate the dependence of module temperature on irradiance, ambient temperature and indoor temperature. The module temperature of no free ventilated facade PV system is higher than cold facade PV system about 13.4$^{\circ}C$. By the results on simulation, the reduction of electrical power loss is 9.57% into cold facade according to free ventilation. The annual averaged PR of BIPV system into cold facade is about 73.1%.

  • PDF