• 제목/요약/키워드: BIPV(Building Integrated PV)

검색결과 92건 처리시간 0.028초

후면부재에 따른 BIPV 모듈의 특성 분석 (Characteristic Analysis of BIPV Module according to Rear Materials)

  • 김현일;강기환;박경은;유권종;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제29권4호
    • /
    • pp.28-33
    • /
    • 2009
  • In 2008, the global photovoltaic(PV) market reached 5.6GW and the cumulative PV power installed totalled almost 15GW compared to 9GW in 2007. Due to a favourable feed-in-tariff, Korea emerged in 2008 as the 4th largest PV market worldwide. PV power installation rose 495.5 percent to 268MW in 2008 compare to 45MW in 2007. Building integrated photovoltaic(BIPV) has the potential to become a major source of renewable energy in the urban environment. BIPV has significant influenced on the reflection by rear materials such as white back sheet and the heat transfer through the building envelope because of the change of the thermal resistance by adding or replacing the building elements. In this study, to use as suitable building materials into environmentally friendly house like green home, characteristic analysis of BIPV module according to rear materials achieved. Electrical output of PV module with white back sheet is high about 10% compared to other pv module because of 83% reflectivity of white back sheet compared to 8.4% reflectivity of other PV modules with different rear materials(black back sheet and glass). In the result of outdoor experiment during a year, electrical output of four different PV module is decreased about 3.72%.

건물일체형 태양광발전 시스템의 발전성능 분석 (A Study on generation characteristics of building integrated Photovoltaic system)

  • 박재완;신우철;김대곤;윤종호
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.75-81
    • /
    • 2013
  • In this study, we analyze the performance characteristics of Building Integrated Photovoltaic (BIPV) system of K Research Building which was designed with the aim of zero carbon building. In addition, BIPV system, which is consist of three modules; G to G(Glass to Glass), G to T(Glass to Tedlar/Crystal) and Amorphous, has 116.2kWp of total capacity, and is applied to wall, window, atrium and pagora on roof. Therefore, in this paper, our research team analyzed BIPV yield and generation characteristic. BIPV yield was 112,589kWh a year from January 2012 to December 2012. And after applying PV panels on the building, the power from the best setting angle, $30^{\circ}$, of panel was compared. In addition, when the PV was attached practically on the building, the generation power was analyzed. BIPV modules in this study the relationship between module setting angle, type of modules ect. and power characteristics plans to identify.

A Study on the PCS Characteristics of a 10kW BIPV System

  • Yoon, Hyung-Sang;Cha, In-Su;Yoon, Jeong-Phil;Lee, Jeong-Il;Seo, Jang-Su
    • Journal of Power Electronics
    • /
    • 제8권2호
    • /
    • pp.163-170
    • /
    • 2008
  • A BIPV(Building Integrated PV) system is united by a constituent outer covering and can expect dual effects that reduce expenses for the establishment of a PV system. It is a profitable technology because it does not need a building as it is a stand alone PV system. In this paper, output characteristics analysis of PCS and web-based monitoring of 10kW BIPV, were stimulated and examined for validity. The BIPV system proposed in this paper was established in at BIC (Biotechnology Industrialization Center) of Dongshin University, which was composed with PCS and Web-monitoring system.

스팬드럴 적용 BIPV의 후면 열 특성에 관한 연구 (A Study on the Thermal Characteristics of BIPV Applied on Curtain Wall Spandrel)

  • 이상길;강태우;장한빈;강기환;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제32권6호
    • /
    • pp.120-126
    • /
    • 2012
  • BIPV is applied to buildings in various forms. However, there are some aspects of consideration in applying PV systems in buildings, such as attaching methods, PV electrical efficiency, appearance and so on. BIPV can be installed on curtain wall spandrel as finishing material, which may combine with insulation. The thermal characteristic of spandrel with BIPV has rarely been studied; the temperature of air space between PV module and insulation layer affects both the electrical behavior of PV module and the energy load in a building. This paper aims to analyse the temperature variation of the layers in BIPV spandrels. In this paper, the temperature of layers, including the air space and PV module, was measured for three different type of BIPV applications on spandrel. The results show that the temperature of air layer for the spandrel with G/G(2) type BIPV module on October was the highest among other months.

BIPV의 아파트 건물 적용 가능성에 대한 연구 (A study on the application of BIPV to the Apartment Building)

  • 이응직
    • KIEAE Journal
    • /
    • 제6권1호
    • /
    • pp.25-32
    • /
    • 2006
  • Regarding to the Domestic housing politics to improve residing environment and effective use of country land, apartment buildings have been constructed since early of 1970s. Now apartment is taking over 50% out of entire housing in Korea. In the view point of PV application to the apartment, PV has amny advantages because of the wideness of out-walls and high floors building in APT. Therefore, if APT could use the electricity produced by BIPV, we can solve more easily environment and energy problems caused by housing. The research conclusion by analysing conditions and application method to introduce BIPV application to APT in near future is as below. -The out look of APT has been developed periodically and recently gable roof or canopy is popular which PV installation is more favorable. -For Balcony part with double skin facade sassy window, It has a preferable condition to install on the wall depending on the window direction. -In case of shorter distance between buildings due to high ratio of outside measurement, it is more desirable to install PV on the roof than on the wall of Apartment by considering low solar altitude. -Also depending on the direction of APT building, it is more effective and productive in electricity in the broad surface of side wall of APT. -In case of superhigh floor APT where facade system is mostly double skin facade of curtain wall system, PV module can replace the traditional curtain wall and will reduce architectural materials and obtain various out look design thereof.

건물일체형 Cold Facade PV 시스템의 성능 분석 (Analysis of Performance of Building Integrated PV System into Cold Facade)

  • 김현일;강기환;박경은;유권종;서승직
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1104-1105
    • /
    • 2008
  • This paper presents the assesment of experimented data and estimated data for electrical and thermal performance evaluation of building integrated photovoltaic(BIPV) system of cold facade type. BIPV module is used to estimate the dependence of module temperature on irradiance, ambient temperature and indoor temperature. The module temperature of no free ventilated facade PV system is higher than cold facade PV system about 13.4$^{\circ}C$. By the results on simulation, the reduction of electrical power loss is 9.57% into cold facade according to free ventilation. The annual averaged PR of BIPV system into cold facade is about 73.1%.

  • PDF

Performance Ratio of Crystalline Si and Triple Junction a-Si Thin Film Photovoltaic Modules for the Application to BIPVs

  • Cha, Hae-Lim;Ko, Jae-Woo;Lim, Jong-Rok;Kim, David-Kwangsoon;Ahn, Hyung-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권1호
    • /
    • pp.30-34
    • /
    • 2017
  • The building integrated photovoltaic system (BIPV) attracts attention with regard to the future of the photovoltaic (PV) industry. It is because one of the promising national and civilian projects in the country. Since land area is limited, there is considerable interest in BIPV systems with a variety of angles and shapes of PV panels. It is therefore expected to be one of the major fields for the PV industry in the future. Since the irradiation is different from each installation angle, the output can be predicted by the angles. This is critical for a PV system to be operated at maximum power and use an efficient design. The development characteristics of tilted angles based on data results obtained via long-term monitoring need to be analyzed. The ratio of the theoretically available and actual outputs is compared with the installation angles of each PV module to provide a suitable PV system for the user.

초고층빌딩의 BIPV 적용성 검토를 위한 선진 사례 조사 (The Advanced Case Study for Investigation on Application of BIPV on Tall Building)

  • 이종민;석호태;양정훈
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.155-160
    • /
    • 2009
  • The increasingly high prices for oil, the exhaustion of fossil fuels as well as concern about global warming are driving rapid growth of alternative sources of energy in the world. The active solution for global environment and exhaustion of energy sources is to develop and popularize the technologies to use natural energy such as sunlight, wind, and water. PV(Photovoltaic) modules are efficient devices that has been considered a logical material for use in buildings. Recent advanced BIPV(Building Integrated PV) technology have rapidly made PVs suitable for direct integration into construction in the world. Recently, building has been higher and higher. Tall buildings have many advantages for BIPV such as wide facade area and no shading effect by the surrounding buildings. However. BIPV has not been applied for tall building facade yet. Therefore, the purpose of the research is to develop suitable BIPV for tall buildings and to put these technologies to practical use. Therefore, the purpose of the study is to investigate unification of BIPV to curtain wall to apply BIPV on tall building through research into advanced application of overseas BIPV cases.

  • PDF

발코니 일체형 태양광발전시스템의 발전성능 분석 (Analysis of Performance of Balcony Integrated PV System)

  • 김현일;강기환;박경은;소정훈;유권종;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제29권1호
    • /
    • pp.32-37
    • /
    • 2009
  • Photovoltaic(PV) permits the on-site production of electricity without concern for fuel supply or environmental adverse effects. The electrical power is produced without noise and little depletion of resources. So BIPV(Building-Integrated Photovoltaic) system have been increased around the world. Hereby the relative installation costs of the system will be relatively low compared to traditional installations of PV in high-rise buildings. This paper examined possibility of building integrated balcony PV system and analyzed both performance and problems of this system. The system is influenced by conditions such as irradiation, module temperature, shade and architectural component etc. If this BIPV system of 1.1kW is possible the natural ventilation in the summer case, the temperature of PV module decrease and then the efficiency of PV system increase generally. By the results, the annual averaged PR of BIPV system of cold facade type is about 74.7%.

건물일체형 태양광발전시스템의 실증분석 (The Output Characteristics of 3kW BIPV System)

  • 김지훈;변문걸;이강연;김평호;조금배;백형래
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.386-389
    • /
    • 2006
  • BIPV(Building Integrated PV) system can expect dual effects that reduce expenses for establishment of PV system by adding new function as outer covering material of building expect producing the electricity. In case of PV(photovoltaic system) there are many generation differences according to the exterior environmental facts(solar cell array, design and installation condition of interactive inverter system). In this paper, we compared constitute factors of 3kW BIPV(solar cell module, inverter), operating characteristic and total system characteristic(utilization, generation efficiency, loss fact) and found out long time operating data using a watch instrumentations. By use of long time operating result, compare a totally operating characteristics, and we proposed a next building application of BIPV. BIPV system that is proposed in this paper, was established in Solar Energy research center of Chosun University, composed with system. The objective of this paper, is to provide a efficient BIPV design method through the considerations for the integration of PV system.

  • PDF