• Title/Summary/Keyword: BIM(Building information Modeling)

Search Result 800, Processing Time 0.025 seconds

Specialty Contractor's Role and Performance Analysis for Digital Fabrication - Focusing on the case of irregular podium construction - (디지털 패브리케이션 전문 건설업체 역할 및 성과 분석 - 비정형 포디움 시공 사례를 중심으로 -)

  • Ham, Nam-Hyuk;Ahn, Byung-Ju;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.8 no.1
    • /
    • pp.43-55
    • /
    • 2018
  • Recently, there have been increasing studies on the application of digital technology, which has its focus of the irregular building. However, most of these studies have not clarified the objective of the technology and the effectiveness of professional manpower on its performance. This study analyzes actual used technology and the role of specialty contractor. It presents a framework to quantify the performance of the specialty contractor. For these purposes, this paper presents a proposed method to evaluate the activities of specialty contractors using a queueing model. As an attempt to verify the model, an actual irregular building project, in which digital fabrication is applied, is investigated during the construction phase. In order to collect the digital fabrication data, digital fabrication reports and specialty contractor's work log of project are reviewed. In addition, Digital Fabrication input personnel, productivity data are collected through interviews with experts involving in the case project. Analysis of specialty contractor's performance in digital fabrication reveals that the wait status of project participants varies probabilistically depending on the digital technology application level. The results of this study are expected to contribute toward the improvement of the production level in the construction industry.

A Study on DEM-based Automatic Calculation of Earthwork Volume for BIM Application

  • Cho, Sun Il;Lim, Jae Hyoung;Lim, Soo Bong;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.131-140
    • /
    • 2020
  • Recently the importance of BIM (Building Information Modeling) that enables 3D location-based design and construction work is being highlighted around the world. In Korea, the road map has been established to settle the design based on BIM using drone survey results by 2025. As the first step, BIM would be applied to road construction projects worth more than 50 billion Korean Won from 2020. On the other hand, drone survey regulation has been enacted and the data for drone survey cost were also included on Standard of construction estimate in 2020. However, more careful improvement is required to reflect drone survey results in BIM design and construction. Currently, Engineering instructions and Standard of construction estimate specifies that earthwork volume must be calculated by cross section method only. So it is required to add the method of DEM (Digital Elevation Model) based volume calculation on these regulations to realize BIM application. In order for that, this study verified the method of DEM based earthwork volume calculation. To get an accurate DEM for accurate volume computation, drone survey was carried out according to the drone survey regulation and then could get an accurate DEM data which have errors less than 3cm in X, Y and 6.8cm in H. As each DEM cell has 3D coordinate component, the volume of each cell can be calculated by obtaining the height of area of the cell then total volume is calculated by multiplying total number of cells by volume of each cell for the construction area. Verification for the new calculation method compare with existing method was carried out. The difference between DEM based volume by drone survey and cross section based volume by traditional survey was less than 1.33% and it can be seen that new DEM method will be able to be applied to BIM design and construction instead of cross section method.

The Study for Improvement Method of Landscape Simulation Program (경관시뮬레이션 프로그램 개선방안에 관한 연구)

  • Lee, Dong-Hwa;Kim, Jae-Myeong
    • Journal of KIBIM
    • /
    • v.10 no.4
    • /
    • pp.89-97
    • /
    • 2020
  • The purpose of this study is to identify the problems of the currently used 3D spatial information utilization system to realize a more accurate landscape and to establish a user-oriented environment to improve the utilization plan for future landscape evaluation. As citizens' interest in urban landscapes with strong public characteristics increases and the speed of urban development also increases, more suitable simulation methods for landscape management are required. Nevertheless, there are many cases of inconvenient correction according to development changes along with many errors in various steps for creating landscape simulation. Therefore, in performing landscape deliberation according to development, it is necessary to create more accurate and efficient landscape simulation, and if changes occur after the initial deliberation, a process that can quickly and conveniently correct and supplement data is needed. In addition, it is necessary to create landscape simulation so that the created modeling source can be used by being compatible with other application programs. In this study, a method of constructing a more accurate and efficient simulation at the time of initial deliberation and a method of creating a landscape simulation model for rapid response to a plan that is changed at the time of re-deliberation are described.

Machine Learning based Optimal Location Modeling for Children's Smart Pedestrian Crosswalk: A Case Study of Changwon-si (머신러닝을 활용한 어린이 스마트 횡단보도 최적입지 선정 - 창원시 사례를 중심으로 -)

  • Lee, Suhyeon;Suh, Youngwon;Kim, Sein;Lee, Jaekyung;Yun, Wonjoo
    • Journal of KIBIM
    • /
    • v.12 no.2
    • /
    • pp.1-11
    • /
    • 2022
  • Road traffic accidents (RTAs) are the leading cause of accidental death among children. RTA reduction is becoming an increasingly important social issue among children. Municipalities aim to resolve this issue by introducing "Smart Pedestrian Crosswalks" that help prevent traffic accidents near children's facilities. Nonetheless such facilities tend to be installed in relatively limited number of areas, such as the school zone. In order for budget allocation to be efficient and policy effects maximized, optimal location selection based on machine learning is needed. In this paper, we employ machine learning models to select the optimal locations for smart pedestrian crosswalks to reduce the RTAs of children. This study develops an optimal location index using variable importance measures. By using k-means clustering method, the authors classified the crosswalks into three types after the optimal location selection. This study has broadened the scope of research in relation to smart crosswalks and traffic safety. Also, the study serves as a unique contribution by integrating policy design decisions based on public and open data.

A Study on the Efficient 3D Scanning Method for Digital Twin Configuration in Construction Site (건설현장의 디지털 트윈 구성을 위한 효율적인 3D 스캐닝 방법에 관한 연구)

  • Kim, Seong-Hun;Kim, Tae-Han;Eom, Ire;Won, Jong-Chul
    • Journal of KIBIM
    • /
    • v.12 no.3
    • /
    • pp.39-51
    • /
    • 2022
  • 3D scan technology can utilize real spatial information as it is in virtual space, so it can be usefully used in various fields such as reverse engineering of buildings and process management. Recently, with the development of ICT technology, more precise scan data can be obtained, and scan processing time has also been greatly reduced. In addition, the combination of software and scanning equipment used in 3D scanning technology is very diverse, and results are very different depending on which technology is used. Accordingly, there is a problem that it is difficult for a user who has no experience in 3D scanning technology to determine which technology and equipment should be used to obtain good results. In this study, 3D scan technologies mainly used at home and abroad are investigated, classified, and tested at actual construction sites to suggest considerations and suitable 3D scan methods when using 3D scans in construction sites. The test results were analyzed to evaluate the time it takes to scan, the final quality, and the user's convenience according to each technology method.

Implementation of 3D Object Model considering Recycle-Design of PSC Box Girder (PSC 박스 거더의 Recycle-Design을 고려한 3차원 객체 모델 구현)

  • Cho, Sung-Hoon;Park, Jae-Guen;Lee, Heon-Min;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.325-330
    • /
    • 2010
  • In the fields of design within civil engineering, BIM based Utilization of 3D object model is still far from commercialization. In this paper, BIM based 3D object model is composed for PSC box girder, super structure of railway bridge. The basic unit of the model is part model. The part model is the minimum unit model. And it has hierarchy to reflect the characteristics of structures. Change orders of structural designer must be reflected quickly in the 3D object model. Repetitive change orders are occurred in actual construction process. To prepare that, we classified design variables to parameters. Change orders of structural designer can be reflected quickly in the 3D object model because those parameters are related with information of 3D object model. In this paper, we studied various benefits of BIM based design method with 3D object model in the fields of design within civil engineering, and proposed the efficient application method of 3D object model for PSC box girder.

A Study on the Design Change History Management for BIM-based Architecture-Structure Collaboration (BIM 기반 건축-구조분야 협업을 위한 설계변경 이력관리 방안 연구)

  • Park, kyoung Jun;Ock, Jong Ho
    • Korea Science and Art Forum
    • /
    • v.37 no.3
    • /
    • pp.135-145
    • /
    • 2019
  • IFC(Industry Foundation Classes) is used for information exchange in BIM-based collaboration process, and it does not secure reliability of information exchange results between fields due to structural limitations. In the end, it is a realistic problem that we have to use specialized BIM software by field, and we can not secure smooth interoperability in the process of information exchange and change. This study was conducted to find ways to secure the interoperability of BIM work between architecture and structure fields by utilizing Open Source provided by software developers to solve these problems. First, through expert survey and in-depth interview, information and improvement factors required in the process of collaboration between architecture and structure were derived. Second, in order to find a solution to the improvement factors, existing studies related to Open-API and domestic and overseas APIs were investigated and analyzed. Third, Ad-On was developed to secure interoperability by using Open API, mainly BIM S/W, which is mainly used in each field. As a result of the study, the possibility of securing interoperability through the management of the design change history between fields was confirmed by using API. It is judged that the application range of API will be expanded to the construction and maintenance field in the future. Therefore, in order to increase the usability for application diffusion, further research on interface improvement through user-centered verification is needed.

Progress Measurement of Structural Frame Construction using Point Cloud Data (포인트 클라우드 데이터를 활용한 골조공사 진도측정 연구)

  • Kim, Ju-Yong;Kim, Sanghee;Kim, Gwang-Hee
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.3
    • /
    • pp.37-46
    • /
    • 2024
  • Recently, 3D laser scanning technology, which can collect accurate and quick information on phenomena, has been attracting attention among smart construction technologies. 3D laser scanning technology can obtain information most similar to reality at construction sites. In this study, we would like to apply a new member identification method to an actual building and present the possibility of applying point cloud data, which can be collected using 3D laser scanning technology, to measuring progress at construction sites. In order to carry out the research, we collected location information for component identification from BIM, set a recognition margin for the collected location information, and proceeded to identify the components that make up the building from point cloud data. Research results We confirmed that the columns, beams, walls, and slabs that make up a building can be identified from point cloud data. The identification results can be used to confirm all the parts that have been completed in the actual building, and can be used in conjunction with the unit price of each part in the project BOQ for prefabricated calculations. In addition, the point cloud data obtained through research can be used as accurate data for quality control monitoring of construction sites and building maintenance management. The research results can contribute to improving the timeliness and accuracy of construction information used in future project applications.

An Index for Measuring the Degree of Completeness of BIM-based Quantity Take-Off (BIM기반 물량산출 완성도 측정을 위한 지수 개발)

  • Lee, Chang-Hee;Kim, Seong-Ah;Chin, Sang-Yoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.79-92
    • /
    • 2011
  • Quantity take-off is one of the critical tasks that determine the cost of a construction project, and its result should be accurate and reliable. BIM-based quantity take-off is a very attractive process for practitioners since the quantity take-off can be done automatically in a fast and accurate way. However, the result of BIM-based quantity take-off can be varied depending on how BIM was modeled. As a project progresses, more detailed design information is getting available, and it can be expected that the degree of completeness and accuracy for the BIMbased quantity take-off is going to be improved as well. However, when estimation is performed at each stage of a project life-cycle, there is no way to measure or forecast how accurate of the quantity take-off result from the BIM data given at the current stage. Therefore, this research derived factors that affect the BIM-based quantity takeoff and developed a methodology and framework to measure and forecast the completeness of BIM-based quantity take-off. The measurement framework and index that are proposed by this research was verified and validated for their consistency and feasibility through six pilot projects.

Effect of Learning Data on the Semantic Segmentation of Railroad Tunnel Using Deep Learning (딥러닝을 활용한 철도 터널 객체 분할에 학습 데이터가 미치는 영향)

  • Ryu, Young-Moo;Kim, Byung-Kyu;Park, Jeongjun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.107-118
    • /
    • 2021
  • Scan-to-BIM can be precisely mod eled by measuring structures with Light Detection And Ranging (LiDAR) and build ing a 3D BIM (Building Information Modeling) model based on it, but has a limitation in that it consumes a lot of manpower, time, and cost. To overcome these limitations, studies are being conducted to perform semantic segmentation of 3D point cloud data applying deep learning algorithms, but studies on how segmentation result changes depending on learning data are insufficient. In this study, a parametric study was conducted to determine how the size and track type of railroad tunnels constituting learning data affect the semantic segmentation of railroad tunnels through deep learning. As a result of the parametric study, the similar size of the tunnels used for learning and testing, the higher segmentation accuracy, and the better results when learning through a double-track tunnel than a single-line tunnel. In addition, when the training data is composed of two or more tunnels, overall accuracy (OA) and mean intersection over union (MIoU) increased by 10% to 50%, it has been confirmed that various configurations of learning data can contribute to efficient learning.