• Title/Summary/Keyword: BES (battery energy storage)

Search Result 40, Processing Time 0.032 seconds

Economic Evaluations of Secondary Battery Energy Storage Systems in Power Distribution Systems (전력저장전지시스템의 경제성 평가)

  • No, Dae-Seok;O, Yong-Taek
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.152-160
    • /
    • 2000
  • This paper presents an efficient evaluation method on the role of new energy storage systems, especially the secondary Battery Energy Storage (BES) systems, in the case where they are interconnected with the power distribution systems. It is important to perform the economic evaluation for the new energy storage systems in a synthetical and quantitative manner, because they are very costly in the early stage of their development and commercialization. In this paper, the multiple functions of BES systems, which are operated at distribution systems, such as load levelling, effective utilization of power distribution systems and uninterruptible power supply at the emergency conditions are classified and analyzed. And then the quantitative evaluation methods of the multiple functions for BES systems are proposed using the mathematical modelling.

  • PDF

Development of Energy Management System for Micro-Grid with Photovoltaic and Battery system

  • Asghar, Furqan;Talha, Muhammad;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.299-305
    • /
    • 2015
  • Global environmental concerns and the ever increasing need of energy, coupled with steady progress in renewable energy technologies, are opening up new opportunities for utilization of renewable energy resources. Distributed electricity generation is a suitable option for sustainable development thanks to the load management benefits and the opportunity to provide electricity to remote areas. Solar energy being easy to harness, non-polluting and never ending is one of the best renewable energy sources for electricity generation in present and future time. Due to the random and intermittent nature of solar source, PV plants require the adoption of an energy storage and management system to compensate fluctuations and to meet the energy demand during night hours. This paper presents an efficient, economic and technical model for the design of a MPPT based grid connected PV with battery storage and management system. This system satisfies the energy demand through the PV based battery energy storage system. The aim is to present PV-BES system design and management strategy to maximize the system performance and economic profitability. PV-BES (photovoltaic based battery energy storage) system is operated in different modes to verify the system feasibility. In case of excess energy (mode 1), Li-ion batteries are charged using CC-CV mechanism effectively controlled by fuzzy logic based PID control system whereas during the time of insufficient power from PV system (mode 2), batteries are used as backup to compensate the power shortage at load and likewise other modes for different scenarios. This operational mode change in PV-BES system is implemented by State flow chart technique based on SOC, DC bus voltages and solar Irradiance. Performance of the proposed PV-BES system is verified by some simulations study. Simulation results showed that proposed system can overcome the disturbance of external environmental changes, and controls the energy flow in efficient and economical way.

Active and Reactive Power Control of the Battery Energy Storage System interconnected with Power Distribution System (배전계통에 연계된 전지전력저장시스템의 유.무효전력 제어)

  • 김재철;문선호;최준호;김응상
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.127-133
    • /
    • 1999
  • Ths paper deals with the active and reactive power control of Battery Energy Storage System (BESS) during its interconnection operation to power distribution system When an interconnection operation of BESS to power distribution system, it is well suited for peak load shaving and distribution voltage compensation by controlling the real and reactive power. Equivalent mxiel of the distribution system and the BESS is derived and power flow equations are presented to control the real and reactive power of BESS. In this paper, to control the active and reactive power of BESS, $P-\delta$ and Q-V control method and ntJIrerical description is presented. To verify the proposed control method, using PSCAD/EMTDC program simulates the active and reactive power control of BESS.f BESS.

  • PDF

A Development of Control Algorithm for 2MVA Battery Energy Storage System (2MVA 배터리 에너지 저장 시스템 제어 알고리즘 개발)

  • Kim, Tae-Hyeong;Kim, Yun-Hyun;Kwon, Byung-Ki;Kim, Kwang-Seob
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.151-152
    • /
    • 2011
  • 본 논문에서는 스마트 그리드에 적용되는 2MVA 배터리 에너지 저장 시스템(BESS, Battery Energy Storage System)의 제어 알고리즘을 제안하고 검증하였다. BESS는 전력변환을 위한 PCS(Power Conditioning System), 배터리 제어 및 상태확인을 위한 BCS(Battery Conditioning System)와 상위 시스템으로부터 지령을 받아 PCS와 BCS를 제어하는 PMS(Power Management System)로 구성되어 있다. BESS는 풍력안정화를 위해 EMS(Energy Management System)의 지령을 받아 운전모드를 선택하고, 운전모드에 따라서 계통측 전력을 제어하거나 배터리측 전류를 제어하고, 배터리의 완전충전을 위해 전압제어를 한다.

  • PDF

Economic Evaluation Algorithm of Energy Storage System using the Secondary Battery (이차전지를 이용한 전기저장장치(BESS)의 경제성 평가 알고리즘)

  • Song, Seok-Hwan;Kim, Byung-Ki;Oh, Seung-Teak;Lee, Kye-Ho;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3813-3820
    • /
    • 2014
  • Recently, with the increase in electrical consumption and the unbalanced power demand and supply, the power reserve rate is becoming smaller and the reliability of the power supply is deteriorating. Under this circumstance, a Battery Energy Storage System (BESS) is considered to be an essential countermeasure for demand side management. On the other hand, an economic evaluation is a critical issue for the introduction of a power system because the cost of BESS is quite high. Therefore, this paper presents economic evaluation method for utility use by considering the best mix method and successive approximation method, and an economic evaluation method for customer use by considering the peak shaving function based on the real time price. From a case study on a model power system and educational customer, it was confirmed that the proposed method is a practical tool for the economic analysis of BESS.

Modeling & Operating Algorithm of Islanding Microgrid with Wind Turbine, Diesel Generator and BESS (풍력-디젤-BESS 독립형 마이크로그리드 모델링 및 운전제어 알고리즘에 관한 연구)

  • Kim, Jae-Eon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5893-5898
    • /
    • 2014
  • This paper proposes a modeling method and operating algorithm of an islanding microgrid that is composed of a Battery Energy Storage System (BESS), wind turbine and diesel generator applied in island areas. Initially, the bilateral AC/DC converter was designed for charge/discharge for frequency and voltage to be maintained within the proper ranges according to the load and weather change, and the operating method was proposed for a diesel generator to operate when power supply from the wind turbine or BESS is insufficient. The proposed modeling and controller design method of BESS was applied to a typical islanded microgrid with a wind turbine and diesel generator. The frequency and voltage was kept within the permissible ranges and the proposed method was proven to be appropriate through simulations.

Recently trend & role of large scale BESS PCS for Transmission Investment Deferral (송전설비 투자 지연을 위한 대용량 BESS의 PCS 기능과 최신 동향)

  • Kim, Minjae;Oh, Seongjin
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.323-324
    • /
    • 2012
  • 최근 전력의 공급신뢰도의 하락으로 인하여 기존 송배전 설비의 신규건설 및 유지보수를 위한 투자의 필요성이 더욱 증대되고 있다. 이에 적절한 대안으로서 배터리를 이용한 에너지 저장 시스템(BESS, Battery Energy Storage System)이 대두되고 있다. 본 논문에서는 송배전 설비 투자 지연을 위한 BESS의 필요성에 대해 살펴보고 그 핵심 구성 요소인 PCS의 기능과 최신 동향에 대해 기술한다.

  • PDF

Consideration for Technical Trend of Large Scale BESS PCS (대용량 BESS를 위한 PCS 기술동향에 대한 고찰)

  • Myung, Hongjae
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.273-274
    • /
    • 2011
  • 최근 급격한 전력수요의 증가는 발전설비 및 송배전 설비의 투자확대를 요구하고 있고 태양광, 풍력 등 신재생에너지 발전의 보급은 전력품질을 저하하는 요인으로 작용하여 이에 대한 대안으로 배터리를 이용한 에너지 저장장치(BESS : Battery Energy Storage System)의 개발이 활발히 이루어지고 있다. 본 논문에서는 BESS의 구성요소 중 배터리의 전력을 계통망과 연계하기 위한 전력 변환 장치인 PCS에 요구되는 기능과 기술동향에 대해 기술한다.

  • PDF

New Reclosing Technique in Distribution System with Battery Energy Storage System (BESS가 연계된 배전계통에서 새로운 재폐로 기법)

  • Seo, Hun-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • The study concerning about the grid connection of the large-capacity battery energy storage system(BESS) is increasing. However, the protection study which is necessary to maintain the reliability of distribution system has been hardly performed. Therefore, this paper analyzes the effect of reclosing among protection issues in distribution system with BESS and proposes the new relcosing method. To verify the proposed method, the BESS, distribution system, and proposed method are modeled by using EMTP/ATPDraw and the various simulations according to the fault clearing time are performed. The simulation results show that the reclosing in distribution system with BESS is successfully performed by proposed method and the operation of BESS is not affected from reclosing.

A Development of 2MVA Battery Energy Storage System (2MVA급 배터리 에너지 저장 시스템 개발)

  • Kim, Soo-Hong;Kim, Yun-Hyun;Lim, Chang-Jin;Kim, Kwang-Seob;Kwon, Byung-Ki;Choi, Chang-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.5-6
    • /
    • 2011
  • 본 논문은 POSCO ICT에서 개발한 2MVA/500kWh급 BESS(Battery Energy Storage System)에 대해 기술하였다. 개발된 BESS는 상위 EMS(Energy Management System)와 연계를 위한 주제어부, 전력변환을 위한 PCS(Power Conditioning System)부, 에너지 저장을 위한 BCS(Battery Conditioning System)부로 구성되어 있다.

  • PDF