• Title/Summary/Keyword: BE-algebra

Search Result 653, Processing Time 0.028 seconds

A VERTEX PROPERTY OF REAL FUNCTION ALGEBRAS

  • Hwang, Sun-Wook
    • The Pure and Applied Mathematics
    • /
    • v.5 no.1
    • /
    • pp.65-72
    • /
    • 1998
  • We investigate a chain of properties of real function algebras along the analogous proofs of the complex cases such as the fact that any real function algebra which is both maximal and essential is pervasive. And some properties of real function algebras with a vertex property will be discussed.

  • PDF

OPPOSITE SKEW COPAIRED HOPF ALGEBRAS

  • Park, Junseok;Kim, Wansoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.85-101
    • /
    • 2004
  • Let A be a Hopf algebra with a linear form ${\sigma}:k{\rightarrow}A{\otimes}A$, which is convolution invertible, such that ${\sigma}_{21}({\Delta}{\otimes}id){\tau}({\sigma}(1))={\sigma}_{32}(id{\otimes}{\Delta}){\tau}({\sigma}(1))$. We define Hopf algebras, ($A_{\sigma}$, m, u, ${\Delta}_{\sigma}$, ${\varepsilon}$, $S_{\sigma}$). If B and C are opposite skew copaired Hopf algebras and $A=B{\otimes}_kC$ then we find Hopf algebras, ($A_{[{\sigma}]}$, $m_B{\otimes}m_C$, $u_B{\otimes}u_C$, ${\Delta}_{[{\sigma}]}$, ${\varepsilon}B{\otimes}{\varepsilon}_C$, $S_{[{\sigma}]}$). Let H be a finite dimensional commutative Hopf algebra with dual basis $\{h_i\}$ and $\{h_i^*\}$, and let $A=H^{op}{\otimes}H^*$. We show that if we define ${\sigma}:k{\rightarrow}H^{op}{\otimes}H^*$ by ${\sigma}(1)={\sum}h_i{\otimes}h_i^*$ then ($A_{[{\sigma}]}$, $m_A$, $u_A$, ${\Delta}_{[{\sigma}]}$, ${\varepsilon}_A$, $S_{[{\sigma}]}$) is the dual space of Drinfeld double, $D(H)^*$, as Hopf algebra.

  • PDF

DIRECT SUM, SEPARATING SET AND SYSTEMS OF SIMULTANEOUS EQUATIONS IN THE PREDUAL OF AN OPERATOR ALGEBRA

  • Lee, Mi-Young;Lee, Sang-Hun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.173-180
    • /
    • 1994
  • Let H be a separable, infinite dimensional, compled Hilbert space and let L(H) be the algebra of all bounded linear operators on H. A dual algebra is a subalgebra of L(H) that contains the identity operator $I_{H}$ and is closed in the ultraweak topology on L(H). Note that the ultraweak operator topology coincides with the wea $k^{*}$ topology on L(H)(see [3]). Bercovici-Foias-Pearcy [3] studied the problem of solving systems of simultaneous equations in the predual of a dual algebra. The theory of dual algebras has been applied to the topics of invariant subspaces, dilation theory and reflexibity (see [1],[2],[3],[5],[6]), and is deeply related with properties ( $A_{m,n}$). Jung-Lee-Lee [7] introduced n-separating sets for subalgebras and proved the relationship between n-separating sets and properties ( $A_{m,n}$). In this paper we will study the relationship between direct sum and properties ( $A_{m,n}$). In particular, using some results of [7] we obtain relationship between n-separating sets and direct sum of von Neumann algebras.ras.s.ras.

  • PDF

Model Predictive Control for Productions Systems Based on Max-plus Algebra

  • Hiroyuki, Goto;Shiro, Masuda;Kazuhiro, Takeyasu;Takashi, Amemiya
    • Industrial Engineering and Management Systems
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Among the state-space description of discrete vent systems, the max-plus algebra is known as one of the effective approach. This paper proposes a model predictive control (MPC) design method based on the max-plus algebra. Several studies related to these topics have been done so far under the constraints that system parameters are constant. However, in practical systems such as production systems, it is common and sometimes inevitable that system parameters vary by each event. Therefore, it is of worth to design a new MPC controller taking account of adjustable system parameters. In this paper, we formulate system parameters as adjustable ones, and they are solved by a linear programing method. Since MPC determines optimal control input considering future reference signals, the controller can be more robust and the operation cost can be reduced. Finally, the proposed method is applied to a production system with three machines, and the effectiveness of the proposed method is verified through a numerical simulation.

HILBERT-SCHMIDT INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALGL

  • Jo, Young-Soo;Kang, Joo-Ho
    • The Pure and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.167-173
    • /
    • 2004
  • Given vectors x and y in a separable Hilbert space $\cal H$, an interpolating operator is a bounded operator A such that Ax = y. In this article, we investigate Hilbert-Schmidt interpolation problems for vectors in a tridiagonal algebra. We show the following: Let $\cal L$ be a subspace lattice acting on a separable complex Hilbert space $\cal H$ and let x = ($x_{i}$) and y = ($y_{i}$) be vectors in $\cal H$. Then the following are equivalent; (1) There exists a Hilbert-Schmidt operator A = ($a_{ij}$ in Alg$\cal L$ such that Ax = y. (2) There is a bounded sequence {$a_n$ in C such that ${\sum^{\infty}}_{n=1}\mid\alpha_n\mid^2 < \infty$ and $y_1 = \alpha_1x_1 + \alpha_2x_2$ ... $y_{2k} =\alpha_{4k-1}x_{2k}$ $y_{2k=1} = \alpha_{4kx2k} + \alpha_{4k+1}x_{2k+1} + \alpha_{4k+1}x_{2k+2}$ for K $\epsilon$ N.

  • PDF

HILBERT-SCHMIDT INTERPOLATION ON AX=Y IN A TRIDIAGONAL ALGEBRA ALG${\pounds}$

  • Kang, Joo-Ho
    • The Pure and Applied Mathematics
    • /
    • v.15 no.4
    • /
    • pp.401-406
    • /
    • 2008
  • Given operators X and Y acting on a separable complex Hilbert space H, an interpolating operator is a bounded operator A such that AX=Y. In this article, we investigate Hilbert-Schmidt interpolation problems for operators in a tridiagonal algebra and we get the following: Let ${\pounds}$ be a subspace lattice acting on a separable complex Hilbert space H and let X=$(x_{ij})$ and Y=$(y_{ij})$ be operators acting on H. Then the following are equivalent: (1) There exists a Hilbert-Schmidt operator $A=(a_{ij})$ in Alg${\pounds}$ such that AX=Y. (2) There is a bounded sequence $\{{\alpha}_n\}$ in $\mathbb{C}$ such that ${\sum}_{n=1}^{\infty}|{\alpha}_n|^2<{\infty}$ and $$y1_i={\alpha}_1x_{1i}+{\alpha}_2x_{2i}$$ $$y2k_i={\alpha}_{4k-1}x_2k_i$$ $$y{2k+1}_i={\alpha}_{4k}x_{2k}_i+{\alpha}_{4k+1}x_{2k+1}_i+{\alpha}_{4k+2}x_{2k+2}_i\;for\;all\;i,\;k\;\mathbb{N}$$.

  • PDF

UNITARY INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALG𝓛

  • JO, YOUNG SOO;KANG, JOO HO;PARK, DONGWAN
    • Honam Mathematical Journal
    • /
    • v.27 no.4
    • /
    • pp.649-654
    • /
    • 2005
  • Given operators X and Y acting on a separable complex Hilbert space ${\mathcal{H}}$, an interpolating operator is a bounded operator A such that AX = Y. We show the following: Let $Alg{\mathcal{L}}$ be a subspace lattice acting on a separable complex Hilbert space ${\mathcal{H}}$ and let $X=(x_{ij})$ and $Y=(y_{ij})$ be operators acting on ${\mathcal{H}}$. Then the following are equivalent: (1) There exists a unitary operator $A=(a_{ij})$ in $Alg{\mathcal{L}}$ such that AX = Y. (2) There is a bounded sequence {${\alpha}_n$} in ${\mathbb{C}}$ such that ${\mid}{\alpha}_j{\mid}=1$ and $y_{ij}={\alpha}_jx_{ij}$ for $j{\in}{\mathbb{N}}$.

  • PDF

Inverse Kinematics Analysis of 7-DOF Anthropomorphic Robot Arm using Conformal Geometric Algebra (등각 기하대수를 이용한 7자유도 로봇 팔의 역기구학 해석)

  • Kim, Je-Seok;Ji, Yong-Kwan;Park, Jahng-Hyon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1119-1127
    • /
    • 2012
  • In this paper, we present an inverse kinematics of a 7-dof Anthropomorphic robot arm using conformal geometric algebra. The inverse kinematics of a 7-dof Anthropomorphic robot arm using CGA can be computed in an easy way. The geometrically intuitive operations of CGA make it easy to compute the joint angles of a 7-dof Anthropomorphic robot arm which need to be set in order for the robot to reach its goal or the positions of a redundant robot arm's end-effector. In order to choose the best solution of the elbow position at an inverse kinematics, optimization techniques have been proposed to minimize an objective function while satisfying the euler-lagrange equation.