• 제목/요약/키워드: BCP materials

검색결과 90건 처리시간 0.022초

골결손부 재건을 위한 금속 이온 치환 이상인산칼슘 합성 및 생체 활성 평가 (Synthesis and bioactivity evaluation of metal ion-substitution biphasic calcium phosphate for bone defect reconstruction)

  • 김태완;김동현;진형호;이승호;박홍채;윤석영
    • 한국결정성장학회지
    • /
    • 제22권6호
    • /
    • pp.279-285
    • /
    • 2012
  • BCP, Mg-BCP, Si-BCP 분말을 공침법(co-precipitation process)을 이용하여 합성하였다. 제조된 분말을 X-선 회절 분석(XRD), 적외선분광분석(FTIR)을 이용하여 특성을 분석하였다. Ca/P 몰 비율이 1.602인 칼슘 결손 아파타이트 공침물을 제조하여 $1000^{\circ}C$ 열처리 과정을 통하여 HAp와 ${\beta}$-TCP 상이 혼재된 BCP, Mg-BCP, Si-BCP을 합성할 수 있었다. 제조된 분말의 생체활성 거동을 평가하기 위하여 Hanks' Balanced Salt Solution(HBSS)에 침적시켜 시간에 따라 형상의 변화 및 결정상을 분석한 결과, BCP 분말에 비하여 금속 이온이 치환된 BCP 분말에서 빠른 생체활성을 관찰할 수 있었다. MTT assay를 통한 세포 성장률 평가에서모든 분말에서 시간 경과에 따라 독성을 나타내지 않았으며, 세포의 활성이 증가하였다.

PCL Infiltration into a BCP Scaffold Strut to Improve the Mechanical Strength while Retaining Other Properties

  • Kim, Min-Sung;Kim, Yang-Hee;Park, Ih-Ho;Min, Young-Ki;Seo, Hyung-Seok;Lee, Byong-Taek
    • 한국재료학회지
    • /
    • 제20권6호
    • /
    • pp.331-337
    • /
    • 2010
  • A highly porous Biphasic Calcium Phosphate (BCP) scaffold was fabricated by the sponge replica method with a microwave sintering technique. The BCP scaffold had interconnected pores ranging from $80\;{\mu}m$ to $1000\;{\mu}m$, which were similar to natural cancellous bone. To enhance the mechanical properties of the porous scaffold, infiltration of polycaprolactone (PCL) was employed. The microstructure of the BCP scaffold was optimized using various volume percentages of polymethylmethacrylate (PMMA) for the infiltration process. PCL successfully infiltrated into the hollow space of the strut formed after the removal of the polymer sponge throughout the degassing and high pressure steps. The microstructure and material properties of the BCP scaffold (i.e., pore size, morphology of infiltrated and coated PCL, compressive strength, and porosity) were evaluated. When a 30 vol% of PMMA was used, the PCL-BCP scaffold showed the highest compressive strength. The compressive strength values of the BCP and PCL-BCP scaffolds were approximately 1.3 and 2MPa, respectively. After the PCL infiltration process, the porosity of the PCL-BCP scaffold decreased slightly to 86%, whereas that of the BCP scaffold was 86%. The number of pores in the $10\;{\mu}m$ to $20\;{\mu}m$ rage, which represent the pore channel inside of the strut, significantly decreased. The in-vitro study confirmed that the PCL-infiltrated BCP scaffold showed comparable cell viability without any cytotoxic behavior.

Fabrication and Characterization of BCP Nano Particle Loaded PCL Fiber and Their Biocompatibility

  • Nguyen, Thi-Phuong;Lee, Byong-Taek
    • 한국재료학회지
    • /
    • 제20권7호
    • /
    • pp.392-400
    • /
    • 2010
  • The electrospinning process was established as a promising method to fabricate nano and micro-textured scaffolds for tissue engineering applications. A BCP-loaded PCL micro-textured scaffold thus can be a viable option. The biocompatibility as well as the mechanical properties of such scaffold materials should be optimized for this purpose. In this study, a composite scaffold of poly ($\varepsilon$-caprolactone) (PCL)-biphase calcium phosphate (BCP) was successfully fabricated by electrospinning. EDS and XRD data show successful loading of BCP nano particles in the PCL fibers. Morphological characterization of fibers shows that with a higher loaded BCP content the fiber surface was rougher and the diameter was approximately 1 to 7 ${\mu}m$. Tensile modulus and ultimate tensile stress reached their highest values in the PCL- 10 wt% BCP composite. When content of nano ceramic particles was low, they were dispersed in the fibers as reinforcements for the polymer matrix. However, at a high content of ceramic particles, the particles tend to agglomerate and lead to decreasing tensile modulus and ultimate stress of the PCL-BCP composite mats. Therefore, the use of nano BCP content for distribution in fiber polymer using BCP for reinforcement is limited. Tensile strain decreased with increasing content of BCP loading. From in vitro study using MG-63 osteoblast cells and L-929 fibroblast like cells, it was confirmed that electrospun PCL-BCP composite mats were biocompatible and that spreading behavior was good. As BCP content increased, the area of cell spreading on the surface of the mats also increased. Cells showed the best adherence on the surface of composite mats at 50 wt% BCP for both L-929 fibroblast-like cells and MG-63 osteoblast cell. PCL- BCP composites are a promising material for application in bone scaffolds.

스폰지 복제법을 이용한 Ag 코팅 BCP 지지체의 제조 및 평가 (Fabrication and Characterization of Ag-coated BCP Scaffold Derived from Sponge Replica Process)

  • 김민성;김영희;송호연;민영기;이병택
    • 한국재료학회지
    • /
    • 제20권8호
    • /
    • pp.418-422
    • /
    • 2010
  • As a starting material, BCP (biphasic calcium phosphate) nano powder was synthesized by a hydrothermal microwave-assisted process. A highly porous BCP scaffold was fabricated by the sponge replica method using 60 ppi (pore per inch) of polyurethane sponge. The BCP scaffold had interconnected pores ranging from $100\;{\mu}m$ to $1000\;{\mu}m$, which were similar to natural cancellous bone. To realize the antibacterial property, a microwave-assisted nano Ag spot coating process was used. The morphology and distribution of nano Ag particles were different depending on the coating conditions, such as concentration of the $AgNO_3$ solution, microwave irradiation times, etc. With an increased microwave irradiation time, the amount of coated nano Ag particles increased. The surface of the BCP scaffold was totally covered with nano Ag particles homogeneously at 20 seconds of microwave irradiation time when 0.6 g of $AgNO_3$ was used. With an increased amount of $AgNO_3$ and irradiation time, the size of the coated particles increased. Antibacterial activities of the solution extracted from the Ag-coated BCP scaffold were examined against gram-negative (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus). When 0.6 g of $AgNO_3$ was used for coating the Ag-coated scaffold, it showed higher antibacterial activities than that of the Ag-coated scaffold using 0.8 g of $AgNO_3$.

스트론튬(Strontium)이 도핑된 다공성 BCP 뼈 이식제가 조골세포에 미치는 영향 (Effect of Strontium Doped Porous BCP as Bone Graft Substitutes on Osteoblast)

  • 변인선;;서형석;이병택;송호연
    • 한국재료학회지
    • /
    • 제20권3호
    • /
    • pp.155-160
    • /
    • 2010
  • In this study, we investigated primary biocompatibility and osteogenic gene expression of porous granular BCP bone substitutes with or without strontium (Sr) doping. In vitro biocompatibility was investigated on fibroblasts like L929 cells and osteoblasts like MG-63 cells using a cell viability assay (MTT) and one cell morphological observation by SEM, respectively. MTT results showed a cell viability percent of L929 fibroblasts, which was higher in Sr-BCP granules (98-101%) than in the non-doped granules (92-96%, p < 0.05). Osteoblasts like MG-63 cells were also found to proliferate better on Sr-doped BCP granules (01-111%) than on the non-doped ones (92-99%, p < 0.05) using an MTT assay. As compared with pure BCP granules, SEM images of MG-63 cells grown on sample surfaces confirmed that cellular spreading, adhesion and proliferation were facilitated by Sr doping on BCP. Active filopodial growth of MG-63 cells was also observed on Sr-doped BCP granules. The cells on Sr-doped BCP granules were well attached and spread out. Gene expression of osteonectin, osteopontin and osteoprotegrin were also evaluated using reverse transcriptase polymerase chain reaction (RT-PCR), which showed that the mRNA phenotypes of these genes were well maintained and expressed in Sr-doped BCP granules. These results suggest that Sr doping in a porous BCP granule can potentially enhance the biocompatibility and bone ingrowth capability of BCP biomaterials.

BCP 전자수송층 두께가 백색 OLED의 효율 및 발광 특성에 미치는 영향 (Effects of BCP Electron Transport Layer Thickness on the Efficiency and Emission Characteristics of White Organic Light-Emitting Diodes)

  • 서유석;문대규
    • 한국전기전자재료학회논문지
    • /
    • 제27권1호
    • /
    • pp.45-49
    • /
    • 2014
  • We have fabricated white organic light-emitting diodes (OLEDs) using several thicknesses of electron-transport layer. The multi-emission layer structure doped with red and blue phosphorescent guest emitters was used for achieving white emission. 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) was used as an electron-transport layer. The thickness of BCP layer was varied to be 20, 55, and 120 nm. The current efficiency, emission and recombination characteristics of multi-layer white OLEDs were investigated. The BCP layer thickness variation results in the shift of emission spectrum due to the recombination zone shift. As the BCP layer thickness increases, the recombination zone shifts toward the electron-transport layer/emission-layer interface. The white OLED with a 55 nm thick BCP layer exhibited a maximum current efficiency of 40.9 cd/A.

실리콘 이온이 첨가된 biphasic calcium phosphate의 합성 및 특성평가 (Synthesis and characterization of silicon ion substituted biphasic calcium phosphate)

  • 송창원;김태완;김동현;박홍채;윤석영
    • 한국결정성장학회지
    • /
    • 제20권5호
    • /
    • pp.243-248
    • /
    • 2010
  • Si-BCP(si-substituted biphasic calcium phosphate)를 제조하기 위하여 $Ca(NO_3)_2{\cdot}4H_2O$, $(NH_4)_2HPO_4$, $Si(OC_2H_5)_4$을 출발 물질로 공침법(co-precipitation process)을 이용하여 합성하였다. 합성된 분말의 HAp/${\beta}$-TCP 결정상 비율 및 Si-P 치환 거동은 X-선 회절 상 분석을 이용하여 측정하였고, silicon ion 첨가 시 나타나는 BCP의 화학적 결합거동을 측정하기 위하여 FT-IR를 사용하여 분석하였다. 또한 Si-BCP 분말의 in-vitro 생분해거동 및 생체활성도를 측정하기 위하여 제조된 분말을 SBF(simulated body fluid) solution에 침적시킨 뒤 분말의 형상과 구성 성분은 SEM과 EDS를 통하여 확인하였다.

X-선 회절 및 격자 매개변수를 이용한 biphasic calcium phosphate 분말의 생분 해성 특성평가 (Characterization of the biodegradable behavior for biphasic calcium phosphates using X-ray diffraction and lattice parameter)

  • 김동현;송창원;김태완;진형호;박홍채;윤석영
    • 한국결정성장학회지
    • /
    • 제21권4호
    • /
    • pp.169-174
    • /
    • 2011
  • 합성된 biphasic calcium phosphate(BCP) 분말의 나노크기 생분해성 거동은 X-선 회절 분석방법, 격자 매개변수 및 전계방출형 주사전자현미경을 통해 특성평가 하였다. BCP 분발은 공침반응 및 하소과정을 통해 합성하였고, 합성된 분발은 행크 용액 (pH = 7.4, $36.5^{\circ}C$)을 이용하여 3주 동안 in vitro 시험 하였다 분해 시험(in vitro) 후, BCP 단위포의 매개변수는 a 및 c축의 불규칙한 변화와 비슷한 격자 왜곡 및 팽창 거동을 보였다.

공침법으로 합성된 biphasic calcium phosphate 분말의 생체활성 거동 (Bioactivity behavior of biphasic calcium phosphate powders prepared by co-precipitation method)

  • 김태완;김동현;진형호;이헌수;박홍채;윤석영
    • 한국결정성장학회지
    • /
    • 제22권2호
    • /
    • pp.99-104
    • /
    • 2012
  • BCP(biphasic calcium phosphate) 분말을 제조하기 위하여 $Ca(NO_3)_2{\cdot}4H_2O$, $(NH_4)_2HPO_4$를 출발 물질로 공침법(co-precipitation process)을 이용하여 합성하였다. 합성된 분말의 열처리 전 후의 HAp(Hydroxyapatite)/${\beta}$-TCP(${\beta}$-Tricalcium phosphate) 결정상 비율 및 분광학적 특성을 XRD 및 FT-IR를 이용하여 분석하였다. BCP 분말의 생체활성 거동을 평가하기 위하여 Hanks' Balanced Salt Solution(HBSS)에 침적시켜 시간에 따라 형상, 이온농도의 변화 및 결정상을 분석한 결과 낮은 결정화도의 HAp가 생성됨을 확인하였다. BCP분말의 세포독성 평가에서도 대조군에 비하여 세포성장률이 우수함을 관찰하였다.