Browse > Article
http://dx.doi.org/10.3740/MRSK.2010.20.3.155

Effect of Strontium Doped Porous BCP as Bone Graft Substitutes on Osteoblast  

Byun, In-Seon (Dept. of Immunology, Medical School, SoonChunHyang University)
Sarkar, Swapan Kumar (Depat. of Biomedical engineering, Medical School, SoonChunHyang University)
Seo, Hyung-Seok (Dept. of Exercise Prescription, Konyang University)
Lee, Byong-Taek (Depat. of Biomedical engineering, Medical School, SoonChunHyang University)
Song, Ho-Yeon (Dept. of Immunology, Medical School, SoonChunHyang University)
Publication Information
Korean Journal of Materials Research / v.20, no.3, 2010 , pp. 155-160 More about this Journal
Abstract
In this study, we investigated primary biocompatibility and osteogenic gene expression of porous granular BCP bone substitutes with or without strontium (Sr) doping. In vitro biocompatibility was investigated on fibroblasts like L929 cells and osteoblasts like MG-63 cells using a cell viability assay (MTT) and one cell morphological observation by SEM, respectively. MTT results showed a cell viability percent of L929 fibroblasts, which was higher in Sr-BCP granules (98-101%) than in the non-doped granules (92-96%, p < 0.05). Osteoblasts like MG-63 cells were also found to proliferate better on Sr-doped BCP granules (01-111%) than on the non-doped ones (92-99%, p < 0.05) using an MTT assay. As compared with pure BCP granules, SEM images of MG-63 cells grown on sample surfaces confirmed that cellular spreading, adhesion and proliferation were facilitated by Sr doping on BCP. Active filopodial growth of MG-63 cells was also observed on Sr-doped BCP granules. The cells on Sr-doped BCP granules were well attached and spread out. Gene expression of osteonectin, osteopontin and osteoprotegrin were also evaluated using reverse transcriptase polymerase chain reaction (RT-PCR), which showed that the mRNA phenotypes of these genes were well maintained and expressed in Sr-doped BCP granules. These results suggest that Sr doping in a porous BCP granule can potentially enhance the biocompatibility and bone ingrowth capability of BCP biomaterials.
Keywords
BCP; strontium doping; porous bone substitute; biocompatibility;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 K. Anselme, Biomaterials, 21(7), 667 (2000).   DOI   ScienceOn
2 M. D. Grynpas and P. J. Marie, Bone, 11(5), 313 (1990).   DOI   ScienceOn
3 A. Nanci, J. D. Wuest, L. Peru, P. Brunet, V. Sharma, S. Zalzal and M. D. McKee, J. Biomed. Mater. Res., 40, 324 (1998).   DOI   ScienceOn
4 K. Anselme, Osteoblast adhesion on biomaterials, Biomaterials, 21, 667 (2000).   DOI   ScienceOn
5 A. Okumura, M. Goto, T. Goto, M. Yoshinari, S. Masuko, T. Katsuki and T. Tanaka, Biomaterials, 22, 2263 (2001).   DOI   ScienceOn
6 A. Crange, F. Gray, P. Cesaro, H. Adle-Biassette, C. Duvoux, J. Bell, P. Parchi, P. Gambetti and J. D. Degos, Ann. Neuro., 38(2), 269 (1995).   DOI   ScienceOn
7 T. Morohashi, T. Sano and S. Yamada, Jpn. J. Pharmacol., 64(3), 155 (1994).   DOI
8 C. V. Steven, E. DeB Marc and C. D. Patrick, Kidney Int., 64, 534 (2003).   DOI   ScienceOn
9 A. Schwarz, F. Hoffmann, J. L'age-Stehr, A. M. Teqzess and G. Offermann, Transplantation, 44(1), 21 (1987).   DOI   ScienceOn
10 O. Gauthier, E. Goyenvalle, J. M. Bouler, J. Guicheux, P. Pilet, P. Weiss and G. Daculsi, J. Mater. Sci. Mater. Med., 12(5), 385 (2001).   DOI   ScienceOn
11 E. Bonnelye, A. Chabadel, F. Saltel and P. Jurdic, Bone, 42(1), 129 (2008).   DOI   ScienceOn
12 D. A. Puleo and, A. Nanci, Biomaterials, 20, 2311 (1999).   DOI   ScienceOn
13 E. Canalis, M. Hott, P. Deloffre, Y. Tsouderos and P. J. Marie, Bone, 18(6), 517 (1996).   DOI   ScienceOn
14 N. Chattopadhyay, S. J. Quinn, O. Kifor, C. Ye and E. M. Brown, Biochem. Pharmacol., 74(3), 438 (2007).   DOI   ScienceOn
15 A. Barbara, P. Delannoy, B. G. Denis and P. J. Marie, Metabolism, 53(4), 532 (2004).   DOI   ScienceOn
16 B. T. Lee, I. C. Kang, A. K. Gain, K. H. Kim and H. Y. Song, J. of the European Ceramic Society, 26, 3525 (2006).   DOI   ScienceOn
17 C. M. Giachelli and S. Steitz, Matrix Biology, 19, 615 (2000).   DOI   ScienceOn
18 J. M. Schakenraad, H. J. Buscher, C. R. Wildevuur and J. Arends, J. Biomed. Mater. Res., 20, 773 (1986).   DOI   ScienceOn
19 G. S. Stein and J. B. Lian, Endocr. Rev., 14(4), 424 (1993).   DOI
20 J. Y. Choi, B. H. Lee, K. B. Song, R. W. Park, I. S. Kim, K. Y. Sohn, J. S. Jo and H. M. Ryoo, J. Cell Biochem., 61(4), 609 (1996).   DOI   ScienceOn
21 P. Ammann, V. Shen, B. Robin, Y. Mauras, J. P. Bonjour and R. Rizzole, J. Bone Miner. Res., 19(12), 2012 (2004).   DOI   ScienceOn
22 S. Tournis and J. Musculoskelet Neuronal Interact, 7(3), 266 (2007).
23 L. L. Zhu, S. Zaidi, Y. Peng, H. Zhou, B. S. Moonga, A. BlesiusA, I. Dupin-Roger, M. Zaidi and L. Sun, Biochem. Biophys. Res. Commun., 355(2), 307 (2007).   DOI   ScienceOn
24 S. Choudhary, S. Wadhwa, L. G. Raisz, C. Alander and C. C. Pibeam, J. Bone Miner. Res., 18(10), 1813 (2003).   DOI   ScienceOn
25 A. K. Gain and B. T. Lee, Materials Science and Engineering: A, 419, 269 (2006).   DOI   ScienceOn
26 D. P. Pioletti, J. Muller and L. R. Rakotomanana, Biomechanics, 36, 131 (2003).   DOI   ScienceOn
27 Primer3 (v. 0.4.0) Pick primers from a DNA sequence, http://frodo.wi.mit.edu/primer3. Retrieved July 22, 2009.
28 K. Webb, V. Hlady and P. A. Tresco, J. Biomed. Mater. Res., 49(3), 362 (2000).   DOI   ScienceOn
29 M. Hott, B. Noel, D. Bernache-Assolant, C. Rey and P. J. Marie, J. Biomed. Mater. Res., 37, 508 (1997).   DOI   ScienceOn
30 M. Bigerelle, K. Anselme and E. Dufresne, Biomol. Eng., 19, 79 (2002).   DOI   ScienceOn
31 R. Rajaraman, D. E. Rounds, S. P. Yen and A. Rembaum, Exp. Cell Res., 88, 327 (1974).   DOI   ScienceOn
32 H. Yuan, Z. Yang, J. D. Bruijn, K. De Groot and X. Zhang, Biomaterials, 22(19), 2617 (2001).   DOI   ScienceOn