• Title/Summary/Keyword: B-spline surface modeling

Search Result 44, Processing Time 0.026 seconds

Fairing B-spline Surfaces Using Optimization Technique (최적화 기법을 이용한 곡면페어링)

  • park, S.K.;Lee, K.W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.95-108
    • /
    • 1993
  • The needs for smooth curves and surfaces are increasing in modeling cars, ships, airplanes, and other consumer products either for aesthetic or functional purpose. However, the curves and surfaces generated by conventional modeling methods usually exhibit an unwanted behavior due to digitizing errors or inadequate generation method, and thus much time and extra effort is spent afterwards to get the faired results. The objective of this work is to develop a fairing scheme by which well refined shape of a surface can be acquired with detecting and removing the shape imperfections of the given surface represented by NURBS. The fairing scheme is based on an optimization process in which the control points of the given surface are repositioned to minimize the integration of the jumps(perturbations) of the unit normal vectors at all surface points.

  • PDF

A Study on the Sweep Surface Modeling for Reverse Engineering (역공학을 위한 Sweep 곡면 모델링에 관한 연구)

  • 임금주;이희관;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.426-429
    • /
    • 2001
  • Many various products are manufactured which have sculptured surfaces recently. Constructing surface of these models is required technique called reverse engineering. In reverse engineering, a product which has sculptured surfaces is measured and we create surface model to acquire complete model data of object. Measured point data needs preprocess and sampling. Next a set of point data in a plane fit section curve. At last, surface is generated by fitting to section curves. Here we uses sweep surface. Sweep surface is compatible fitting CAD model to drawing. This paper discusses converting approximation of NURBS surface as a standard surface.

  • PDF

Surface Deformation by using 3D Target Curve for Virtual Spatial Design (가상 공간 디자인을 위한 3차원 목표곡선을 이용한 곡면 변형)

  • Kwon, Jung-Hoon;Lee, Jeong-In;Chai, Young-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.10
    • /
    • pp.868-876
    • /
    • 2006
  • 2D input data have to be converted into 3D data by means of some functions and menu system in 2D input modeling system. But data in 3D input system for virtual spatial design can be directly connected to the 3D modeling data. Nevertheless, efficient surface modeling and deformation algorithm for the 3D input modeling system are not proposed yet. In this paper, problems of conventional NURBS surface deformation methods which can occur when applied in the 3D input modeling system are introduced. And NURBS surface deformation by 3D target curves, in which the designer can easily approach, are suggested. Designer can efficiently implement the virtual spatial sketching and design by using the proposed deformation algorithm.

Quality Improvement of B-spline Surfaces through Fairing of Data Points (측정점의 순정을 통한 B-스플라인 곡면 품질의 개선)

  • 흥석용;이현찬
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.1
    • /
    • pp.40-47
    • /
    • 2001
  • In reverse engineering, existing products are digitized fur the computer modeling. Using the digitized data, surfaces are modeled for new products. However, in the digitizing process measuring errors or deviations can be happened often in practice. Thus, it is important to adjust such errors or deviations during the computer modeling. To adjust the errors, fairing of the modeled surfaces is performed. In this paper, we present a surface fairing algorithm based on various fairness metrics. Fairness metrics can be discrete. We adopt discrete metrics for fairing given 3D point set. The fairness metrics include discrete principal curvatures. In this paper, automatic fairing process is proposed for fairing given 3D point sets for surfaces. The process uses various fairness criteria so that it is adequate to adopt designers'intents.

  • PDF

On the Reclamation Earthwork Calculation using the Hermite and Spline Function (Hermite와 Spline 함수를 이용한 매립토공량 계산)

  • Mun, Du-Yeoul;Lee, Yong-Hee;Lee, Mun-Jae
    • Journal of Navigation and Port Research
    • /
    • v.26 no.4
    • /
    • pp.473-479
    • /
    • 2002
  • The estimation of the volume of a pit excavation is often required in many surveying, soil mechanics, highway applications and transportation engineering situations. The calculation of earthwork plays a major role in plan or design of many civil engineering projects such as seashore reclamation, and thus it has become very important to improve the accuracy of earthwork calculation. In this paper the spot height method, proposed formulas(A, B, C), and chen and Line method are compared with the volumes of the pits in these examples. And we proposed an algorithm of finding a terrain surface with the free boundary conditions and both direction spline method drawback, i.e., the modeling curves form peak points at the joints. To avoid this drawback, the cubic spline polynomial was chosen as the methematical model of the new method. From the characteristics of the cubic spline polynomial, the modeling curve of the new method was smooth and matched the ground profile well. As a result of this study, algorithm of proposed three methods to estimate pit excavation volume provided a better accuracy than spot height, chamber, chen and Lin method. And the mathematical model mentioned makes is thought to give a maximum acccuracy in estimating the volume of a pit excavation.

Wake Roll-up Modeling and Steady Hydrodynamic Analysis of Marine Propellers Using a B-Spline Based Higher-Order Panel Method (B스플라인 고차 패널법을 이용한 프로펠러 후류감김 모델링 및 정상유동해석)

  • Ahn, Byoung-Kwon;Kim, Gun-Do;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.353-360
    • /
    • 2008
  • A numerical model for the analysis of the marine propeller including wake roll-up is presented. In this study, we apply a higher-order panel method, which is based on a B-spine representation for both generations of the propeller geometry and hydrodynamic solutions, to predict the flow around the propeller blades. The present model is validated by comparison of the experimental measurements. The results show that the present method is able to predict the improved pressure distributions on the blade surface, especially very close to propeller tip regions, where other panel methods without the wake roll-up model give erroneous results.

Surface Rendering using Stereo Images

  • Lee, Sung-Jae;Lee, Jun-Young;Lee, Myoung-Ho;Kim, Jeong-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.181.5-181
    • /
    • 2001
  • This paper presents the method of 3D reconstruction of the depth information from the endoscopic stereo scopic images. After camera modeling to find camera parameters, we performed feature-point based stereo matching to find depth information. Acquired some depth information is finally 3D reconstructed using the NURBS(Non Uniform Rational B-Spline) algorithm. The final result image is helpful for the understanding of depth information visually.

  • PDF

Surface Deformation Using Guide Surfaces (가이드 곡면을 이용한 곡명의 변형)

  • Kim, Sung-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.6
    • /
    • pp.441-451
    • /
    • 2007
  • In this paper, the method to modify a surface through three dimensional vector field technique is presented, In this method two guide surfaces are required as a shape reference. One is the shape of original surface, the other is the target shape for the result surface. Proposed method is consists of two steps. The first step is to calculate the mapping points on original and target guide surfaces so that the shape error may be minimized. The second step is to construct the smooth vector field from mapping points of the first step. The developed method is applied to shoe design system which makes the surface modeling very easy and effective.

A Sweep Surface based on Two-Parameter Motion (2-변수 모션기반의 스윕곡면)

  • Yoon, Seung-Hyun;Lee, Ji-Eun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • We present a new technique for constructing a sweep surface using two-parameter motion. Firstly, a new rational B-spline motion with two parameters is introduced, which is obtained by extending its orientation curve and scaling curve to surface counterparts. A sweep surface is then defined by a single vertex v under the two-parameter motion and allows to represent different u-directional iso-curves depending on parameter ${\upsilon}$. Efficient techniques for modeling and editing the surface are achieved by intuitively controlling the two-parameter motion. We demonstrate the effectiveness of our technique with experimental results on modeling and editing a 3D propeller model.

Finite Element Modeling of the Rat Cervical Spine and Adjacent Tissues from MRI Data (MRI 데이터를 이용한 쥐의 경추와 인접한 조직의 유한요소 모델화)

  • Chung, Tae-Eun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.6
    • /
    • pp.436-442
    • /
    • 2012
  • Traumatic loading during car accidents or sports activities can lead to cervical spinal cord injury. Experiments in spinal cord injury research are mainly carried out on rabbit or rat. Finite element models that include the rat cervical spinal cord and adjacent soft tissues should be developed for efficient studies of mechanisms of spinal cord injury. Images of a rat were obtained from high resolution MRI scanner. Polygonal surfaces were extracted structure by structure from the MRI data using the ITK-SNAP volume segmentation software. These surfaces were converted to Non-uniform Rational B-spline surfaces by the INUS Rapidform rapid prototyping software. Rapidform was also used to generate a thin shell surface model for the dura mater which sheathes the spinal cord. Altair's Hypermesh pre-processor was used to generate finite element meshes for each structure. These processes in this study can be utilized in modeling of other biomedical tissues and can be one of examples for reverse engineering on biomechanics.