• 제목/요약/키워드: B-spline Approximation

검색결과 75건 처리시간 0.025초

A locally refinable T-spline finite element method for CAD/CAE integration

  • Uhm, Tae-Kyoung;Kim, Ki-Seung;Seo, Yu-Deok;Youn, Sung-Kie
    • Structural Engineering and Mechanics
    • /
    • 제30권2호
    • /
    • pp.225-245
    • /
    • 2008
  • T-splines are recently proposed mathematical tools for geometric modeling, which are generalizations of B-splines. Local refinement can be performed effectively using T-splines while it is not the case when B-splines or NURBS are used. Using T-splines, patches with unmatched boundaries can be combined easily without special techniques. In the present study, an analysis framework using T-splines is proposed. In this framework, T-splines are used both for description of geometries and for approximation of solution spaces. This analysis framework can be a basis of a CAD/CAE integrated approach. In this approach, CAD models are directly imported as the analysis models without additional finite element modeling. Some numerical examples are presented to illustrate the effectiveness of the current analysis framework.

A simple method to compute a periodic solution of the Poisson equation with no boundary conditions

  • Moon Byung Doo;Lee Jang Soo;Lee Dong Young;Kwon Kee-Choon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권4호
    • /
    • pp.286-290
    • /
    • 2005
  • We consider the poisson equation where the functions involved are periodic including the solution function. Let $R=[0,1]{\times}[0,l]{\times}[0,1]$ be the region of interest and let $\phi$(x,y,z) be an arbitrary periodic function defined in the region R such that $\phi$(x,y,z) satisfies $\phi$(x+1, y, z)=$\phi$(x, y+1, z)=$\phi$(x, y, z+1)=$\phi$(x,y,z) for all x,y,z. We describe a very simple method for solving the equation ${\nabla}^2u(x, y, z)$ = $\phi$(x, y, z) based on the cubic spline interpolation of u(x, y, z); using the requirement that each interval [0,1] is a multiple of the period in the corresponding coordinates, the Laplacian operator applied to the cubic spline interpolation of u(x, y, z) can be replaced by a square matrix. The solution can then be computed simply by multiplying $\phi$(x, y, z) by the inverse of this matrix. A description on how the storage of nearly a Giga byte for $20{\times}20{\times}20$ nodes, equivalent to a $8000{\times}8000$ matrix is handled by using the fuzzy rule table method and a description on how the shape preserving property of the Laplacian operator will be affected by this approximation are included.

제어곡면 수정에 의한 기하오차 보정 (Compensation of Geometric Error by the Correction of Control Surface)

  • 고태조;박상신;김희술
    • 한국정밀공학회지
    • /
    • 제18권4호
    • /
    • pp.97-103
    • /
    • 2001
  • Accuracy of a machined part is determined by the relative motion between the cutting tool and the workpiece. One of the important factors which affects the relative motion is the geometric errors of a machine tool. In this study, firstly, geometric errors are measured by laser interferometer, and the positioning error of each control point selected uniformly on the control surface CAD model can be estimated from th oirm shaping model and geometric error data base. Where a form shaping function is derived from the link of homogeneous transformation matrix. Secondly, control points are shifted to the estimated amount of positioning errors. A new control surface is modeled with NURBS(Non Uniform Rational B-Spline) surface approximation to the shifted control points. By generating tool paths to the redesigned control surface, we reduce the machining error quite.

  • PDF

Energy Based Multiple Refitting for Skinning

  • Jha, Kailash
    • International Journal of CAD/CAM
    • /
    • 제5권1호
    • /
    • pp.11-18
    • /
    • 2005
  • The traditional method of manipulation of knots and degrees gives poor quality of surface, if compatibility of input curves is not good enough. In this work, a new algorithm of multiple refitting of curves has been developed using minimum energy based formulation to get compatible curves for skinning. The present technique first reduces the number of control points and gives smoother surface for given accuracy and the surface obtained is then skinned by compatible curves. This technique is very useful to reduce data size when a large number of data have to be handled. Energy based technique is suitable for approximating the missing data. The volumetric information can also be obtained from the surface data for analysis.

인터벌 연산 기반의 곡면간 교차선 계산에 관한 연구 (A Study on Intersection Computation in Interval Arithmetic)

  • 고광희
    • 한국CDE학회논문집
    • /
    • 제15권3호
    • /
    • pp.178-188
    • /
    • 2010
  • This paper addresses the problem of determining if two surfaces intersect tangentially or transversally in a mathematically consistent manner and approximating an intersection curve. When floating point arithmetic is used in the computation, due to the limited precision, it often happens that the decision for tangential and transversal intersection is not clear cut. To handle this problem, in this paper, interval arithmetic is proposed to use, which provides a mathematically consistent way for such decision. After the decision, the intersection is traced using the validated ODE solver, which runs in interval arithmetic. Then an iterative method is used for computing the accurate intersection point at a given arc-length of the intersection curve. The computed intersection points are then approximated by using a B-spline curve, which is provided as one instance of intersection curve for further geometric processing. Examples are provided to demonstrate the proposed method.

형상 역공학을 통한 공정중 금형 가공물의 자동인식 (Automatic Recognition of In-Process mold Dies Based on Reverse Engineering Technology)

  • 김정권;윤길상;최진화;김동우;조명우;박균명
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.420-425
    • /
    • 2003
  • Generally, reverse engineering means getting CAD data from unidentified shape using vision or 3D laser scanner system. In this paper, we studied unidentified model by machine vision based reverse engineering system to get information about in-processing model. Recently, vision technology is widely used in current factories, because it could inspect the in-process object easily, quickly, accurately. The following tasks were mainly investigated and implemented. We obtained more precise data by corning camera's distortion, compensating slit-beam error and revising acquired image. Much more, we made similar curves or surface with B-spline approximation for precision. Until now, there have been many case study of shape recognition. But it was uncompatible to apply to the field, because it had taken too many processing time and has frequent recognition failure. This paper propose recognition algorithm that prevent such errors and give applications to the field.

  • PDF

역공학을 위한 Sweep 곡면 모델링에 관한 연구 (A Study on the Sweep Surface Modeling for Reverse Engineering)

  • 임금주;이희관;양균의
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.426-429
    • /
    • 2001
  • Many various products are manufactured which have sculptured surfaces recently. Constructing surface of these models is required technique called reverse engineering. In reverse engineering, a product which has sculptured surfaces is measured and we create surface model to acquire complete model data of object. Measured point data needs preprocess and sampling. Next a set of point data in a plane fit section curve. At last, surface is generated by fitting to section curves. Here we uses sweep surface. Sweep surface is compatible fitting CAD model to drawing. This paper discusses converting approximation of NURBS surface as a standard surface.

  • PDF

NURBS 곡면기반의 기하학적 모델링과 셀 유한요소해석의 연동 (Integration of Shell FEA with Geometric Modeling Based on NURBS Surface Representation)

  • 최진복;노희열;조맹효
    • 대한기계학회논문집A
    • /
    • 제31권1호
    • /
    • pp.105-112
    • /
    • 2007
  • The linkage framework of geometric modeling based on NURBS(Non-Uniform Rational B-Spline) surface and shell finite analysis is developed in the present study. For this purpose, geometrically exact shell finite element is implemented. NURBS technology is employed to obtain the exact geometric quantities for the analysis. Especially, because NURBS is the most powerful and wide-spread method to represent general surfaces in the field of computer graphics and CAD(Computer Aided Design) industry, the direct computation of surface geometric quantities from the NURBS surface equation without approximation shows great potential for the integration between geometrically exact shell finite element and geometric modeling in the CAD systems. Some numerical examples are given to verify the performance and accuracy of the developed linkage framework. In additions, trimmed surfaces with some cutouts are considered for more practical applications.

Application of the Weak-Scatterer Hypothesis to the Wave-Body Interaction Problems

  • Kim, Yong-hwan;Sclavounos, Paul-D.
    • Journal of Ship and Ocean Technology
    • /
    • 제4권2호
    • /
    • pp.1-12
    • /
    • 2000
  • The present study concentrates on the weak-scatterer hypothesis for the nonlinear wave-body interaction problems. In this method, the free surface boundary conditions are linearized on the incoming wave profile and the exact body motion is applied. The considered problems are the diffraction problem near a circular cylinder and the ship response in oblique waves. The numerical method of solution is a Rankine panel method. The Rankine panel method of this study adopts the higher-order B spline basis function for the approximation of physical variables. A modified Euler scheme is applied for the time stepping, which has neutral stability. The computational result shows some nonlinear behaviors of disturbance waves and wave forces. Moreover, the ship response shows very close results to experimental data.

  • PDF

가이드 곡면을 이용한 곡명의 변형 (Surface Deformation Using Guide Surfaces)

  • 김성환
    • 한국CDE학회논문집
    • /
    • 제12권6호
    • /
    • pp.441-451
    • /
    • 2007
  • In this paper, the method to modify a surface through three dimensional vector field technique is presented, In this method two guide surfaces are required as a shape reference. One is the shape of original surface, the other is the target shape for the result surface. Proposed method is consists of two steps. The first step is to calculate the mapping points on original and target guide surfaces so that the shape error may be minimized. The second step is to construct the smooth vector field from mapping points of the first step. The developed method is applied to shoe design system which makes the surface modeling very easy and effective.