• Title/Summary/Keyword: B-SiC

Search Result 1,320, Processing Time 0.04 seconds

Low Temperature Sintering and Microwave Dielectric Properties of Ba5Nb4O15 Ceramics (Ba5Nb4O15 세라믹스의 저온소결 및 마이크로파 유전특성)

  • Kim, Jong-Dae;Kim, Eung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.783-787
    • /
    • 2004
  • Microwave dielectric properties and the microstructure of $Ba_5Nb_4O_{15}$ ceramics with $PbO-B_2O_3-SiO_2$ glass frit were investigated to reduce the sintering temperature of $Ba_5Nb_4O_{15}$ ceramics as a function of the amount of glass frit from $0.5wt\%$ to $10wt\%$ and the sintering condition. The sintered density and the microwave dielectric properties of $Ba_5Nb_4O_{15}$ ceramics were remarkably changed with the amount of glass fit which existed as a liquid phase and assisted the densification. $Ba_5Nb_4O_{15}$ with $3wt\%$ $PbO-B_2O_3-SiO_2$ glass frit sintered at $900^{\circ}C$ for 2 h showed dielectric constant (K) of 41.4, a quality factor (Q $\times$f) of 13,485 GHz, and a Temperature Coefficient of resonant Frequency (TCF) of 9 ppm/$^{\circ}C$. Due to no trace of physical and chemical reaction between this composition and Ag electrode cofired at $900^{\circ}C$ for 2 h, this ceramics can be a good candidate for the multilayer dielectric filter.

Aging Effect of Magnetic Properties in Amorphous $Fe_{78}B_{13}Si_9$ Alloy (비정질 $Fe_{78}B_{13}Si_9$ 합금의 자기적 특성의 경년 열화)

  • Kim, Ki-Uk;Min, Bog-Ki;Song, Jae-Sung;Hong, Jin-Wan;Cho, Hyun-Jin;Lee, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.05a
    • /
    • pp.49-51
    • /
    • 1988
  • The heat treatment condition and aging behavior of melt spun amorphous $Fe_{78}B_{13}Si_9$(Metglas 26058-2) were studied with investigating its magnetic properties, i.e., Br, $B_l$, Hc. The optimum heat treatment condition was $400^{\circ}C$, 1 hour under the external field of 200e, and aging was due to the surface oxidation and the appearance of local CSRO (chemical short lange order) with time and temperature. In addition. we investigated the effects of the thickness of the amorphous ribbons on the magnetic properties and aging effect of them.

  • PDF

Effect of Ca and Al Additions on the Magnetic Properties of Nanocrytalline Fe-Si-B-Nb-Cu Alloy Powder Cores

  • Moon, Sun Gyu;Kim, Ji Seung;Sohn, Keun Yong;Park, Won-Wook
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.192-196
    • /
    • 2016
  • The Fe-Si-B-Nb-Cu alloys containing Ca and Al were rapidly solidified to thin ribbons by melt-spinning. The ribbons were ball-milled to make powders, and then mixed with 1 wt.% water glass and 1.5 wt.% lubricant. The mixed powders were burn-off, and then compacted to form toroidal-shaped cores, which were heat treated to crystallize the nano-grain structure and to remove residual stress of material. The characteristics of the powder cores were analyzed using a differential scanning calorimetry (DSC) and a B-H meter. The microstructures were observed using transmission electron microscope (TEM). The optimized soft magnetic properties (${\mu}_i$ and $P_{cv}$) of the powder cores were obtained from the Ca and Al containing alloys after annealing at $530^{\circ}C$ for 1 h. The core loss of Fe-Si-B-Nb-Cu-based powder cores was reduced by the addition of Ca element, and the initial permeability increased due to the addition of Al element.

Electrochemical Characteristics of Cu3Si as Negative Electrode for Lithium Secondary Batteries at Elevated Temperatures (리튬 이차전지 음극용 Cu3Si의 고온에서의 전기화학적 특성)

  • Kwon, Ji-Y.;Ryu, Ji-Heon;Kim, Jun-Ho;Chae, Oh-B.;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.116-122
    • /
    • 2010
  • A $Cu_3Si$ film electrode is obtained by Si deposition on a Cu foil using DC magnetron sputtering, which is followed by annealing at $800^{\circ}C$ for 10 h. The Si component in $Cu_3Si$ is inactive for lithiation at ambient temperature. The linear sweep thermammetry (LSTA) and galvano-static charge/discharge cycling, however, consistently illustrate that $Cu_3Si$ becomes active for the conversion-type lithiation reaction at elevated temperatures (> $85^{\circ}C$). The $Cu_3Si$ electrode that is short-circuited with Li metal for one week is converted to a mixture of $Li_{21}Si_5$ and metallic Cu, implying that the Li-Si alloy phase generated at 0.0 V (vs. Li/$Li^+$) at the quasi-equilibrium condition is the most Li-rich $Li_{21}Si_5$. However, the lithiation is not extended to this phase in the constant-current charging (transient or dynamic condition). Upon de-lithiation, the metallic Cu and Si react to be restored back to $Cu_3Si$. The $Cu_3Si$ electrode shows a better cycle performance than an amorphous Si electrode at $120^{\circ}C$, which can be ascribed to the favorable roles provided by the Cu component in $Cu_3Si$. The inactive element (Cu) plays as a buffer against the volume change of Si component, which can minimize the electrode failure by suppressing the detachment of Si from the Cu substrate.

Effect of YAG on the Fracture Toughness and Electrical Conductivity of $\beta-SIC-ZrB_{2}$ Composites ($\beta-SIC-ZrB_{2}$복합체의 파괴인성과 전기전도도에 미치는 YAG의 영향)

  • Shin, Yong-Deok;Ju, Jin-Young;Yoon, Se-Won;Hwang, Chul;Park, Mi-Lim
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.839-842
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-SiC-ZrB$_2$ electroconductive ceramic composites were investigated as function of the liquid forming additives of $Al_2$O$_3$+Y$_2$O$_3$. Phase analysis of composites by XRD revelled $\alpha$ -SiC(6H), ZrB$_2$, and YAG(Al$_{5}$ Y$_3$O$_{12}$ ). Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism, the fracture toughness showed the highest value of 6.3MPa.m$^{1}$2/ for composites added with 24wt% $Al_2$O$_3$+Y$_2$O$_3$additives at room temperature. The resistance temperature coefficient respectively showed the value of 2.46$\times$10$^{-3}$ , 2.47$\times$10$^{-3}$ , 2.52$\times$ 10$^{-3}$ $^{\circ}C$ for composite added with 16, 20, 24wt% A1$_2$O$_3$+Y$_2$O$_3$additives. The electircal resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25^{\circ}C$ to 90$0^{\circ}C$.

  • PDF

Development of Ultra-High Temperature Ceramics (초고온 세라믹스의 발전 동향)

  • Lee, Sea Hoon;Park, Min-Sung;Zou, Yun
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.261-268
    • /
    • 2022
  • Ultra-high temperature ceramics (UHTC) such as ZrB2, ZrC, HfB2, HfC and TaC have been recently investigated for the application to hyper-sonic systems such as nose-cone, rocket nozzle and leading edge. In this paper, the recent research results about UHTC have been reviewed. Domestic and international research results about UHTC mainly during the last 5 years were briefly summarized. Also, the results of C3HARME project, which was one of the Horizon 2020 program in EU, to get over the problems of UHTC such as brittleness through the fabrication of ultra-high temperature ceramic matrix composites (UHTCMC) were briefly introduced.

Formation of single-crystal Si islands via continuous-scan Sequential Lateral Solidification

  • Turk, B.A.;Wilt, P.C. var der;Limanov, A.B.;Chitu, A.M.;Im, J.S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.245-247
    • /
    • 2003
  • We have previously shown that single-crystal Si regions on glass substrates can be obtained by crystallizing as-deposited a-Si films using a specific version of the SLS process, referred to as dot-SLS Such single-crystal islands can, for instance, be used for manufacturing of high-performance TFTs that are expected to become increasingly more relevant in the future. In this paper, we demonstrate that the dot-SLS process can be implemented using a continuous-scan SLS scheme that enables the attainment of high crystallization rates that are desired for industrial applications. We will furthermore report on recent experimental findings regarding the nature of the defects that can be created during the process.

  • PDF