• Title/Summary/Keyword: B-SiC

Search Result 1,320, Processing Time 0.026 seconds

Heat Treatment Effects of $Fe_{73.0}Cu{1.0}Nb_{3.5}Si_{14.0}B_{7.6}$Alloy with Imbedded Nanocrystalline Phase under Magnetic Field (초미세결정립과 비정질이 공존하는 $Fe_{73.9}$$Cu_{1.0}$$Nb_{3.5}$$Si_{14.0}$$B_{7.6}$ 합금의 자기장 중 열처리)

  • Yang, J.S.;Son, D.;Cho, Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 1998
  • The crystallographic and high frequency characteristics of $Fe_{73.9}Cu_{1.0}Nb_{3.5}Si_{14.0}B_{7.6}$ soft magnetic alloys were investigated under the magnetic field annealing. As-cast ribbon with which already imbedded nanocrystalline Fe-Si phase on the surface have a preferred orientation with (400) plane to surface and also with the [011] direction parallel to the ribbon length. The extra nanocrystalline Fe-Si phase appeared throughout at 45$0^{\circ}C$ in samples with or without the longitudinal magnetic field. However the formation of nanocrystalline phase does not appear on the suface layer until 50$0^{\circ}C$ annealing temperature under the transverse field. The cryststallization fraction of annealed samples with longitudinal magnetic field is higher than that of samples without magnetic field. When the transverse magnetic field is applied, the crystallization fraction does not increases but decreases until 50$0^{\circ}C$. However the crystallization of internal regions can be confirmed by X-ray diffraction measurement via tilting the sample. It was found that for all samples, the saturation induction were all same with 1.3 T. The coercive field of as-cast sample was 1.06 A/cm, but in annealed samples it decrease from 0.56 to 0.1 A/cm with increasing annealing temperature from 400 and 55$0^{\circ}C$, respectively. The squareness of annealed samples under transverse magnetic field has a small value than that of both without field and with longitudinal field annealing.

  • PDF

Oxidation Behavior of Oxide Particle Spray-deposited Mo-Si-B Alloys

  • Park, J.S.;Kim, J.M.;Kim, H.Y.;Perepezko, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.6
    • /
    • pp.299-305
    • /
    • 2007
  • The effect of spray deposition of oxide particles on oxidation behaviors of as-cast Mo-14.2Si-9.6B (at%) alloys at $1200^{\circ}C$ up to for 100 hrs has been investigated. Various oxide powders are utilized to make coatings by spray deposition, including $SiO_2,\;TiO_2,\;ZrO_2,\;HfO_2$ and $La_2O_3$. It is demonstrated that the oxidation resistance of the cast Mo-Si-B alloy can be significantly improved by coating with those oxide particles. The growth of the oxide layer is reduced for the oxide particle coated Mo-Si-B alloy. Especially, for the alloy with $ZrO_2$ coating, the thickness of oxide layer becomes only one fifth of that of uncoated alloys when exposed to in air for 100 hrs. The reduction of oxide scale growth of the cast Mo-Si-B alloy due to oxide particle coatings are discussed in terms of the change of viscosity of glassy oxide phases that form during oxidation at high temperature.

Study of Laser Chemical Vapor Deposition of Silicon Carbide from Tetramethylsilane (Si(CH3)4로부터 SiC의 레이저 화학증착에 관한 연구)

  • Lee, Yeong-Rim
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1226-1233
    • /
    • 2002
  • The purpose of the present study was to examine some basic aspects of laser chemical vapor deposition that will be ultimately utilized for solid freeform fabrication of three dimensional objects. Specifically, deposition of silicon carbide (SiC) using tetramethylsilane (TMS) as precursor was studied for a rod grown by $CO_2$laser-assisted chemical vapor deposition. First, temperature distribution for substrate was analyzed to select proper substrate where temperature was high enough for SiC to be deposited. Then, calculations of chemical equilibrium and heat and mass flow with chemical reactions were performed to predict deposition rates, deposit profiles, and deposit components. Finally, several rods were experimentally grown with varying chamber pressure and compared with the theoretical results.

Electroless Nickel-Boron Plating on p-type Si Wafer by DMAB (DMAB에 의한 P형 실리콘 기판 무전해 니켈-붕소 도금)

  • 김영기;박종환;이원해
    • Journal of Surface Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.206-214
    • /
    • 1991
  • In the basic study of selective electroless Ni plating of Si wafers, plating rate and physical properties are investigated to obtain optimum conditions of contact hole filling. Si wafers are excellently activated in the concentration of 0.5M IF, 1mM PdCl2, 2mM EDTA at $70^{\circ}C$, 90sec. The optimum condition of Ni-B deposition on p-type Si wafers is 0.1M NiSO4, 0.11M Citrate, $70^{\circ}C$, pH6.8, 8mM DMAB. The main factor in the sheet resistences variation of films is amorphous and on heat treating matrix was transformed into a stable phase (Ni+Ni3B) at $300-400^{\circ}C$. But pH or DMAB concentration in the plating solution doesn't play role of heat-affected phase change.

  • PDF

Microstructure Characterization of Nb-Si-B alloys Prepared by Spark Plasma Sintering Process (방전 플라즈마 소결(Spark Plasma Sintering) 방법에 의해 제조된 Nb-Si-B계 합금의 미세조직 특성)

  • Kim, Sang-Hwan;Kim, Nam-Woo;Jeong, Young-Keun;Oh, Sung-Tag;Kim, Young Do;Lee, Seong;Suk, Myung Jin
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.426-431
    • /
    • 2015
  • Microstructural examination of the Nb-Si-B alloys at Nb-rich compositions is performed. The Nb-rich corner of the Nb-Si-B system is favorable in that the constituent phases are Nb (ductile and tough phase with high melting temperature) and $T_2$ phase (very hard intermetallic compound with favorable oxidation resistance) which are good combination for high temperature structural materials. The samples containing compositions near Nb-rich corner of the Nb-Si-B ternary system are prepared by spark plasma sintering (SPS) process using $T_2$ and Nb powders. $T_2$ bulk phase is made in arc furnace by melting the Nb slug and the Si-B powder compact. The $T_2$ bulk phase was subsequently ball-milled to powders. SPS is performed at $1300^{\circ}C$ and $1400^{\circ}C$, depending on the composition, under 30 MPa for 600s, to produce disc-shaped specimen with 15 mm in diameter and 3 mm high. Hardness tests (Rockwell A-scale and micro Vickers) are carried out to estimate the mechanical property.

Crystal Structure and Piezoelectric Properties of Four Component Langasite A3B Ga3Si2O14 (A = Ca or Sr, B = Ta or Nb)

  • Ohsato, Hitoshi;Iwataki, Tsuyoshi;Morikoshi, Hiroki
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.171-176
    • /
    • 2012
  • As langasite $A_3BC_3D_2O_{14}$ compounds with piezoelectric properties exhibit no phase transition up to the melting point of 1,400-$1,500^{\circ}C$, many high temperature applications are expected for the SAW filter, temperature sensor, pressure sensor, and so on, based on the digital transformation of wider bandwidth and higher-bit rates. It has a larger electromechanical coupling factor compared to quartz and also nearly the same temperature stability as quartz. The $La_3Ga_5SiO_{14}$ (LGS) crystal with the $Ca_3Ga_2Ge_4O_{14}$-type crystal structure was synthesized and the crystal structure was analyzed by Mill et al. It is also an important feature that the growth of the single crystal is easy. In the case of three-element compounds such as $[R_3]_A[Ga]_B[Ga_3]_C[GaSi]_DO_{14}$ (R=La, Pr and Nd), the piezoelectric constant increases with the ionic radius of R. In this study, crystal structures of four-element compounds such as $[A_3]_A[B]_B[Ga_3]_C[Si_2]_DO_{14}$ (A = Ca or Sr, B = Ta or Nb) are analyzed by a single crystal X-ray diffraction, and the mechanism and properties of the piezoelectricity depending on the species of cation was clarified based on the crystal structure.

Fabrication of SAW for harsh environment USN and its characteristics (극한 환경 USN용 SAW 제작과 그 특성)

  • Chung, Gwiy-Sang;Hoang, Si-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.13-16
    • /
    • 2009
  • In this study, AlN thin films were deposited on a polycrystalline (poly) 3C-SiC buffer layer for surface acoustic wave (SAW) applications using a pulsed reactive magnetron sputtering system. AFM, XRD and FT-IR were used to analyze structural properties and preferred orientation of the AlN/3C-SiC thin film. Suitability of the film in SAW applications was investigated by comparing the SAW characteristics of an interdigital transducer (IDT)/AlN/3C-SiC structure with the IDT/AIN/Si structure at 160 MHz in the temperature range $30-150^{\circ}C$. These experimental results showed that AlN films on the poly 3C-SiC layer were highly (002) oriented. Furthermore, the film showed improved temperature stability for the SAW device, $TCF\;=\;-18\;ppm//^{\circ}C$. The change in resonance frequency according to temperature was nearly linear. The insertion loss decrease was about $0.033dB/^{\circ}C$. However, some defects existed in the film, which caused a slight reduction in SAW velocity.

  • PDF

Study in Mechanism of Hydrogen Retention by C-SiC Films with IR

  • Huang, N.K.;Xiong, Q.;Liu, Y.G.;Yang, B.;Wang, D.Z.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.1
    • /
    • pp.46-50
    • /
    • 2002
  • C-SiC films with different content of SiC on stainless steel substrate were prepared with ion beam mixing. It was found that hydrogen concentrations in C-SiC coatings was higher than that in stainless steel after H$\^$+/ ion implantation followed by thermal annealing. Infrared (IR) transmission measurement was used to study the mechanism of hydrogen retention by C-SiC films. The vibrational features in the range between 400 and 3200 cm$\^$-1/ in IR transmission spectra show the Si-CH$_3$, Si-CH$_2$, Si-H, CH$_2$and CH$_3$bonds, which are responsible for retaining hydrogen.

  • PDF

Microstructure, Mechanical and Wear Properties of Hot-pressed $Si_3N_4-TiB_2$ Composite

  • Kim, Hyun-Jin;Lee, Soo-Whon;Tadachika Nakayama;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.324-330
    • /
    • 1999
  • $Si_3N_4$-$TiB_2$ with 2 wt% $Al_2O_3$ and 4 wt% $Y_2O_3$ additives was hot pressed in a flowing $N_2$ environment with varying $TiB_2$ content from 10 to 50 vol%. Variations of mechanical (hardness, fracture toughness, and flexual strength), and tribological properties as a function of $TiB_2$ content were investigated. As the content of $TiB_2$ increased, relative density decreased due to the chemical reaction of $TiB_2$in $N_2$ environment. The reduction of density causes mechanical properties to be degraded with an increase of $TiB_2$ in $Si_3N_4$. Tribological properties were dependent of microstructure as well as mechanical properties, however, they were degraded strongly by the chemical reaction of $Si_3N_4$-$TiB_2$ during hot pressing in $N_2$ environment. SEM and TEM observations, and X-ray diffraction analysis that the chemical reaction products at the interface are TiCN, Si, and $SiO_2$. Also, the comparison of XRD patterns of the $Si_3N_4$-40 vol% $TiB_2$ composites hot pressed at $1,750^{\circ}C$ for 1 hour between in $N_2$ and in Ar gas was made. The XRD peaks of Si and $SiO_2$ were not found in Ar, but still a weak peak of TiCN was presented.

  • PDF

New Boron Compound, Silicon Boride Ceramics for Capturing Thermal Neutrons (Possibility of the material application for nuclear power generation)

  • Matsushita, Jun-ichi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.15-15
    • /
    • 2011
  • As you know, boron compounds, borax ($Na_2B_4O_5(OH)_4{\cdot}8H_2O$) etc. were known thousands of years ago. As for natural boron, it has two naturally occurring and stable isotopes, boron 11 ($^{11}B$) and boron 10 ($^{10}B$). The neutron absorption $^{10}B$ is included about 19~20% with 80~81% $^{11}B$. Boron is similar to carbon in its capability to form stable covalently bonded molecular networks. The mass difference results in a wide range of ${\beta}$ values between the $^{11}B$ and $^{10}B$. The $^{10}B$ isotope, stable with 5 neutrons is excellent at capturing thermal neutrons. For example, it is possible to decrease a thermal neutron required for the nuclear reaction of uranium 235 ($^{235}U$). If $^{10}B$ absorbs a neutron ($^1n$), it will change to $^7Li+^1{\alpha}$ (${\alpha}$ ray, like $^4He$) with prompt ${\gamma}$ ray from $^{11}B$ $^{11}B$ (equation 1). $$^{10}B+^1n\;{\rightarrow}\;^{11}B\;{\rightarrow}\; prompt \;{\gamma}\;ray (478 keV), \;^7Li+4{\alpha}\;(4He)\;\;\;\;{\cdots}\; (1)$$ If about 1% boron is added to stainless steel, it is known that a neutron shielding effect will be 3 times the boron free steel. Enriched boron or $^{10}B$ is used in both radiation shielding and in boron neutron capture therapy. Then, $^{10}B$ is used for reactivity control and in emergency shutdown systems in nuclear reactors. Furthermore, boron carbide, $B_4C$, is used as the charge of a nuclear fission reaction control rod material and neutron cover material for nuclear reactors. The $B_4C$ powder of natural B composition is used as a charge of a control material of a boiling water reactor (BWR) which occupies commercial power reactors in nuclear power generation. The $B_4C$ sintered body which adjusted $^{10}B$ concentration is used as a charge of a control material of the fast breeder reactor (FBR) currently developed aiming at establishment of a nuclear fuel cycle. In this study for new boron compound, silicon boride ceramics for capturing thermal neutrons, preparation and characterization of both silicon tetraboride ($SiB_4$) and silicon hexaboride ($SiB_6$) and ceramics produced by sintering were investigated in order to determine the suitability of this material for nuclear power generation. The relative density increased with increasing sintering temperature. With a sintering temperature of 1,923 K, a sintered body having a relative density of more than 99% was obtained. The Vickers hardness increased with increasing sintering temperature. The best result was a Vickers hardness of 28 GPa for the $SiB_6$ sintered at 1,923K for 1 h. The high temperature Vickers hardness of the $SiB_6$ sintered body changed from 28 to 12 GPa in the temperature range of room temperature to 1,273 K. The thermal conductivity of the SiB6 sintered body changed from 9.1 to 2.4 W/mK in the range of room temperature to 1,273 K.

  • PDF