• Title/Summary/Keyword: B cell antigen receptor

Search Result 53, Processing Time 0.026 seconds

Effects of Gleditsiae Spina(GS) on the Polycystic Ovary Induced by Estradiol Valerate in Rats (조각자(皂角刺)가 estradiol valerate로 유발된 백서(白鼠)의 다낭성 난소에 미치는 영향)

  • Gu, Hee-Jun;Cho, Sung-Hee
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.23 no.2
    • /
    • pp.71-84
    • /
    • 2010
  • Purpose: In the theory of traditional medicine, Glenditsia spina(GS) can resolve carbuncle, relive swelling, dispel wind and destroy parasites. This study was designed to investigate the effects of GS on gene expression of ovarian tissue in polycystic ovary syndrome(PCOS) rats. Methods: In this experiment, female rats injected with a single dose of 2 mg estradiol valerate(EV) and GS was given for 5 weeks. The genetic profile for the effects on ovarian tissue in PCOS rats was measured using microarray technique, and the functional analysis on these genes was conducted. Results: 985 genes were increased in control and restored to normal level in GS group. (B), 733 genes were decreased in control group and restored to normal level in GS group. (F). Metabolic pathways related in B group genes were Graft-versus-host disease, Allograft rejection, Autoimmune thyroid disease, Cytokine-cytokine receptor interaction, Small cell lung cancer, Type I diabetes mellitus. Metabolic pathways related in F group genes were Antigen processing and present, Adipocytokine signalling pathway, Focal adhesion, ECM-receptor interaction, Pancreatic cancer, Notch signalling pathway, Tight junction. The network of total protein interactions was measured using cytoscape program, and some key molecules, such as c-Fos, c-Myc, ABL1 related in B group, MAPK8, RASA1, CALR related in F group that can be used for elucidation of therapeutical mechanism of medicine in future were identified. Conclusion: These results suggest possibility of GS as anti-cancer and anti-hyperplasia drug in PCOS. In addition, the present author also suggests that related mechanisms are involved in suppression of proto-oncogene such as c-Fos, c-Myc and ABL1, and in regulation of cell cycle such as RASA1.

Induction of Anti-Aquaporin 5 Autoantibody Production by Immunization with a Peptide Derived from the Aquaporin of Prevotella melaninogenica Leads to Reduced Salivary Flow in Mice

  • Ahreum Lee;Duck Kyun Yoo;Yonghee Lee;Sumin Jeon;Suhan Jung;Jinsung Noh;Soyeon Ju;Siwon Hwang;Hong Hee Kim;Sunghoon Kwon;Junho Chung;Youngnim Choi
    • IMMUNE NETWORK
    • /
    • v.21 no.5
    • /
    • pp.34.1-34.16
    • /
    • 2021
  • Sjögren's syndrome (SS) is an autoimmune disease characterized by dryness of the mouth and eyes. The glandular dysfunction in SS involves not only T cell-mediated destruction of the glands but also autoantibodies against the type 3 muscarinic acetylcholine receptor or aquaporin 5 (AQP5) that interfere with the secretion process. Studies on the breakage of tolerance and induction of autoantibodies to these autoantigens could benefit SS patients. To break tolerance, we utilized a PmE-L peptide derived from the AQP5-homologous aquaporin of Prevotella melaninogenica (PmAqp) that contained both a B cell "E" epitope and a T cell epitope. Repeated subcutaneous immunization of C57BL/6 mice with the PmE-L peptide efficiently induced the production of Abs against the "E" epitope of mouse/human AQP5 (AQP5E), and we aimed to characterize the antigen specificity, the sequences of AQP5E-specific B cell receptors, and salivary gland phenotypes of these mice. Sera containing anti-AQP5E IgG not only stained mouse Aqp5 expressed in the submandibular glands but also detected PmApq and PmE-L by immunoblotting, suggesting molecular mimicry. Characterization of the AQP5E-specific autoantibodies selected from the screening of phage display Ab libraries and mapping of the B cell receptor repertoires revealed that the AQP5E-specific B cells acquired the ability to bind to the Ag through cumulative somatic hypermutation. Importantly, animals with anti-AQP5E Abs had decreased salivary flow rates without immune cell infiltration into the salivary glands. This model will be useful for investigating the role of anti-AQP5 autoantibodies in glandular dysfunction in SS and testing new therapeutics targeting autoantibody production.

Immune cell-derived small extracellular vesicles in cancer treatment

  • Choi, Sung-Jin;Cho, Hanchae;Yea, Kyungmoo;Baek, Moon-Chang
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.48-56
    • /
    • 2022
  • Small extracellular vesicles (sEVs) secreted by most cells carry bioactive macromolecules including proteins, lipids, and nucleic acids for intercellular communication. Given that some immune cell-derived sEVs exhibit anti-cancer properties, these sEVs have received scientific attention for the development of novel anti-cancer immunotherapeutic agents. In this paper, we reviewed the latest advances concerning the biological roles of immune cell-derived sEVs for cancer therapy. sEVs derived from immune cells including dendritic cells (DCs), T cells, natural-killer (NK) cells, and macrophages are good candidates for sEV-based cancer therapy. Besides their role of cancer vaccines, DC-shed sEVs activated cytotoxic lymphocytes and killed tumor cells. sEVs isolated from NK cells and chimeric antigen receptor (CAR) T cells exhibited cytotoxicity against cancer cells. sEVs derived from CD8+ T and CD4+ T cells inhibited cancer-associated cells in tumor microenvironment (TME) and activated B cells, respectively. M1-macrophage-derived sEVs induced M2 to M1 repolarization and also created a pro-inflammatory environment. Hence, these sEVs, via mono or combination therapy, could be considered in the treatment of cancer patients in the future. In addition, sEVs derived from cytokine-stimulated immune cells or sEV engineering could improve their anti-tumor potency.

Different Gene Expression on Human Blood by Administration of OLT-2 (OLT-2의 복용에 의한 인간 혈중 유전자 발현 변화)

  • Cha, Min-Ho;Moon, Jin-Seok;Jeon, Byung-Hun;Yoon, Yong-Gab;Yoon, Yoo-Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.853-860
    • /
    • 2006
  • This study was performed to investigate genes which are differently expressed in human blood by administrating of OLT-2. OLT-2 was medical precipitation composed of three medicinal herbs, Ginseng Radix, Astragali Radix, Glycyrrhizae Radix, and anti-leukemia effect of it was evaluated from Byung Hun Jeon of Wonkwang University this study was approved by Institutional Review Board of Korea Institute of Oriental Medicine (Taejeon, Korea) and four male subjects participated in this study. Gene expressions were evaluated by cDNA chip, in which 24,000 genes were spotted. Hierarchical cluster and biological process against the genes, which expression changes were more than 1.6 fold, were constructed by cluster 3.0 providing Stanford University and EASE(http://apps1 .maid.nih.gov/DAVID). Five groups were clustered according to their expression patterns. Group A contained gene decreased by OLT-2 and increased genes by OLT-2 were involved in Group B, C, D. In biological process, expression of genes involved in cytokine or cell calcium signaling, such as interleukin 18 and G-protein beta 4 were increased, but protein tyrosine phosphatase receptor type c, which function is cell adhesion between antigen-presenting cell and T or B-cell, was decreased by OLT-2. This study provides the most comprehensive available survey of gene expression changes in response to anti-leukemia effect of OLT-2 in human blood.

Rosmarinic Acid Down-Regulates the LPS-Induced Production of Monocyte Chemoattractant Protein-1 (MCP-1) and Macrophage Inflammatory Protein-1α (MIP-1α) via the MAPK Pathway in Bone-Marrow Derived Dendritic Cells

  • Kim, Hyung Keun;Lee, Jae Joon;Lee, Jun Sik;Park, Yeong-Min;Yoon, Taek Rim
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.583-589
    • /
    • 2008
  • In the present study, we investigated whether rosmarinic acid, which has been suggested to exhibit anti-inflammatory properties, can suppress the expressions of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-$1{\alpha}$ ($MIP-1{\alpha}$) via the MAPK pathway in LPS-stimulated bone marrow-derived dendritic cells (BMDCs) in the presence of GM-CSF and IL-4 in media. The effects of rosmarinic acid were investigated in BMDCs with respect to the following; cytotoxicity, surface molecule expression, dextran-FITC uptake, cell migration, chemokine gene expression, and the MAPK signaling pathway. Rosmarinic acid was found to significantly inhibit the expressions of CD80, CD86, MHC class I, and MHC class II in LPS-stimulated mature BMDCs, and rosmarinic acid-treated BMDCs were found to be highly efficient with regards to antigen capture via mannose receptor-mediated endocytosis. In addition, rosmarinic acid reduced cell migration by inducing the expression of a specific chemokine receptor on LPS-induced mature BMDCs. Rosmarinic acid also significantly reduced the expressions of MCP-1 and $MIP-1{\alpha}$ induced by LPS in BMDCs and inhibited LPS-induced activation of MAPK and the nuclear translocation of $NF-{\kappa}B$. These findings broaden current perspectives concerning our understanding of the immunopharmacological functions of rosmarinic acid, and have ramifications that concern the development of therapeutic drugs for the treatment of DC-related acute and chronic diseases.

Involvement of TLR4-JNK/NF-κB signaling pathway in RAW264.7 cell activation of Protaetia brevitarsis seulensis larvae extracts (흰점박이꽃무지 유충 추출물의 RAW264.7 세포 활성화에서 TLR4-JNK/NF-κB 신호전달 경로의 관여)

  • Ju-Hwi Park;Jongbeom Chae;Joon Ha Lee;Dongyup Hahn;Ju-Ock Nam
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.447-454
    • /
    • 2023
  • In the environment in which humans live, there are various antigens that invade the human body and interfere with humans leading a healthy life, so the immune system recognizes the antigen then removes them through a complex mechanism. Macrophages are widely distributed immune cells involved in the innate immune system, and produce various immune modulators such as inducible nitric oxide synthase-induced nitric oxide, cyclooxygenase-2 induced prostaglandin E2 and proinflammatory cytokines such as tumor necrosis factor-alpha. On the other hand, Protaetia brevitarsis seulensis larvae are a type of edible insect that have emerged as an alternative to the future food supply problem. The immuno-modulatory effect through the activation of murine macrophage RAW264.7 cell via mitogen-activated protein kinases (MAPKs)/nuclear factor-kappa B (NF-κB) signaling pathways has been reported. Based on this report, in this study, we confirmed how the expression of immune modulators induced by Protaetia brevitarsis seulensis larvae extracts in RAW264.7 cells was changed by treatment with pharmacological inhibitors of toll-like receptor 4 (TLR4), MAPKs and NF-κB signaling pathways. As a result, reduction of immune modulators was confirmed in the c-Jun N-terminal kinase (JNK) inhibitor treatment group and NF-κB inhibitor treatment group among the Protaetia brevitarsis seulensis larvae-treated RAW264.7 cell. Furthermore, in the TLR4 inhibitor-treated group, decreases in phosphorylation of JNK and NF-κB factors were confirmed in Protaetia brevitarsis seulensis larvae-treated RAW264.7 cell, as well as decreases in immune modulators. This results suggest that Protaetia brevitarsis seulensis larvae activates RAW264.7 cells by the engagement of TLR4-JNK/NF-κB signaling pathway.

Efficient Transduction with Recombinant Adenovirus in EBV-transformed B Lymphoblastoid Cell Lines

  • Kim, Hye-Jin;Cho, Hyun-Il;Han, Yoon-Hee;Park, Soo-Young;Kim, Dong-Wook;Lee, Dong-Gun;Kim, Jee-Hoon;Shin, Wan-Shik;Paik, Soon-Young;Kim, Chun-Choo;Hong, Young-Seon;Kim, Tai-Gyu
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.376-382
    • /
    • 2004
  • The Epstein-Barr-transformed B lymphoblastoid cell lines, LCL, which express antigens, are potential antigen-presenting cells (APCs) for the induction of cytotoxic T lymphocytes in vitro. However, transfecting LCL with subsequent selection by antibiotics is notoriously difficult because the plating efficiencies of LCL are reported to be 1% or less. Therefore, this study investigated the optimal conditions for increasing the transduction efficiency of a recombinant adenovirus to LCL for use as a source of APCs. The transduction efficiencies were < 13% (SD $\pm$ 2.13) at a multiplicity of infection (MOI) of 100, while it was increased to 28% (SD $\pm$ 9.43) at an MOI of 1000. Moreover, its efficiencies to LCL that expressed the coxsackie adenovirus receptor were increased to 60% (SD $\pm$ 6.35) at an MOI of 1000, and were further increased to 70% (SD $\pm$ 4.56) when combined with the centrifugal method. The cationic liposome or anionic polymer had no effect on the transduction efficiency when compared to that of the centrifugal method. These results may be used as a convenient source of target cells for a CTL assay and/or autologous APCs for the induction of the in vitro CTL responses that are specific to viral and tumor antigens.

Overexpression of cholinergic receptor nicotinic gamma subunit inhibits proliferation and differentiation of bovine preadipocytes

  • Jiawei, Du;Hui, Zhao;Guibing, Song;Yuan, Pang;Lei, Jiang;Linsen, Zan;Hongbao, Wang
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.200-208
    • /
    • 2023
  • Objective: Muscle acetylcholine receptors have five alpha subunits (α, β, δ, ε, or γ), and cholinergic receptor nicotinic gamma subunit (CHRNG) is the γ subunit. It may also play an essential role in biological processes, including cell differentiation, growth, and survival, while the role of CHRNG has not been studied in the literature. Therefore, the purpose of this study is to clarify the effect of CHRNG on the proliferation and differentiation of bovine preadipocytes. Methods: We constructed a CHRNG overexpression adenovirus vector and successfully overexpressed it on bovine preadipocytes. The effects of CHRNG on bovine preadipocyte proliferation were detected by Edu assay, cell counting Kit-8 (CCK-8), real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), Western blot and other techniques. We also performed oil red O, RT-qPCR, Western blot to explore its effect on the differentiation of preadipocytes. Results: The results of Edu proliferation experiments showed that the number of EDU-positive cells in the overexpression group was significantly less. CCK-8 experiments found that the optical density values of the cells in the overexpression group were lower than those of the control group, the mRNA levels of proliferating cell nuclear antigen (PCNA), cyclin A2 (CCNA2), cyclin B1 (CCNB1), cyclin D2 (CCND2) decreased significantly after CHRNG gene overexpression, the mRNA levels of cyclin dependent kinase inhibitor 1A (CDKN1A) increased significantly, and the protein levels of PCNA, CCNB1, CCND2 decreased significantly. Overexpression of CHRNG inhibited the differentiation of bovine preadipocytes. The results of oil red O and triglyceride determination showed that the size and speed of lipid droplets accumulation in the overexpression group were significantly lower. The mRNA and protein levels of peroxisome proliferator activated receptor gamma (PPAR class="checkNonKBPoint">γ), CCAAT enhancer binding protein alpha (CEBPα), fatty acid binding protein 4 (FABP4), fatty acid synthase (FASN) decreased significantly. Conclusion: Overexpression of CHRNG in bovine preadipocytes inhibits the proliferation and differentiation of bovine preadipocytes.

Antigen Nonspecific Death of Immature Thymocytes by Corticosteroids and TNF (스테로이드와 TNF에 의한 항원 비특이적 미성숙 흉선세포 사멸)

  • Oh, Keunhee;Surh, Charles D;Cho, Jaejin;Lee, Dong-Sup
    • IMMUNE NETWORK
    • /
    • v.4 no.2
    • /
    • pp.81-87
    • /
    • 2004
  • Background: In the thymus, developing thymocytes continually interact with thymic epithelial cell components. Self MHC restriction of mature T cells are imposed in the thymus through interaction of immature double positive thymocytes and thymic cortical epithelial cells. The site of negative selection, however, is a matter of debate. Through systemic injection of anti-TCR antibody or antigenic peptides, investigators suggested that most of the negative selection occurs in the thymic cortex. But the requirements for negative selection, i.e cellular counterparts and costimulatory molecules are more available in the medulla or cortico-medullary junction rather than in the thymic cortex. Methods: The direct and indirect pathways of thymocyte death after systemic anti-TCR antibody injection were separated through several experimental systems. B6 mice were either adrenalectomized or sham-adrenalectomized to evaluate the role of endogenous glucocorticoids from adrenal gland. Role of TNF were evaluated through using TNF receptor double knockout mice. Results: We found that without indirectly acting mediators such as $TNF-\alpha$ or corticosteroid, double positive thymocyte death were minimal by systemic injection of anti-TCR antibody in TNF receptor double knockout neonatal mice. Also by analyzing neonatal wild-type mice with adoptively transferred mature T cells, only peripheral activation of mature T cells could induce extensive double positive thymocyte death. Conclusion: Thus, systemically injected anti-TCR antibody mediated thymocyte death are mostly induced through indirect pathway.

Historical Review and Future of Cardiac Xenotransplantation

  • Jiwon Koh;Hyun Keun Chee;Kyung-Hee Kim;In-Seok Jeong;Jung-Sun Kim;Chang-Ha Lee;Jeong-Wook Seo
    • Korean Circulation Journal
    • /
    • v.53 no.6
    • /
    • pp.351-366
    • /
    • 2023
  • Along with the development of immunosuppressive drugs, major advances on xenotransplantation were achieved by understanding the immunobiology of xenograft rejection. Most importantly, three predominant carbohydrate antigens on porcine endothelial cells were key elements provoking hyperacute rejection: α1,3-galactose, SDa blood group antigen, and N-glycolylneuraminic acid. Preformed antibodies binding to the porcine major xenoantigen causes complement activation and endothelial cell activation, leading to xenograft injury and intravascular thrombosis. Recent advances in genetic engineering enabled knock-outs of these major xenoantigens, thus producing xenografts with less hyperacute rejection rates. Another milestone in the history of xenotransplantation was the development of co-stimulation blockaded strategy. Unlike allotransplantation, xenotransplantation requires blockade of CD40-CD40L pathway to prevent T-cell dependent B-cell activation and antibody production. In 2010s, advanced genetic engineering of xenograft by inducing the expression of multiple human transgenes became available. So-called 'multi-gene' xenografts expressing human transgenes such as thrombomodulin and endothelial protein C receptor were introduced, which resulted in the reduction of thrombotic events and improvement of xenograft survival. Still, there are many limitations to clinical translation of cardiac xenotransplantation. Along with technical challenges, zoonotic infection and physiological discordances are major obstacles. Social barriers including healthcare costs also need to be addressed. Although there are several remaining obstacles to overcome, xenotransplantation would surely become the novel option for millions of patients with end-stage heart failure who have limited options to traditional therapeutics.