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AUTHOR'S SUMMARY

On January 7th, 2022, a historical event of pig-to-human cardiac xenotransplantation was 
performed using genetically engineered porcine xenograft and co-stimulation blockade-
based immunosuppression. Though the patient developed xenograft failure and succumbed 
to death on post-operative day 60, this event shed light on the cumulative effect of scientists 
and physicians who worked hard to unveil the underlying immunobiology of cross-species 
organ transplantation. In this review, we will summarize major advances along the history of 
cardiac xenotransplantation, current status in Korea, and remaining challenges.

ABSTRACT

Along with the development of immunosuppressive drugs, major advances on 
xenotransplantation were achieved by understanding the immunobiology of xenograft 
rejection. Most importantly, three predominant carbohydrate antigens on porcine 
endothelial cells were key elements provoking hyperacute rejection: α1,3-galactose, SDa 
blood group antigen, and N-glycolylneuraminic acid. Preformed antibodies binding to the 
porcine major xenoantigen causes complement activation and endothelial cell activation, 
leading to xenograft injury and intravascular thrombosis. Recent advances in genetic 
engineering enabled knock-outs of these major xenoantigens, thus producing xenografts 
with less hyperacute rejection rates. Another milestone in the history of xenotransplantation 
was the development of co-stimulation blockaded strategy. Unlike allotransplantation, 
xenotransplantation requires blockade of CD40-CD40L pathway to prevent T-cell dependent 
B-cell activation and antibody production. In 2010s, advanced genetic engineering of 
xenograft by inducing the expression of multiple human transgenes became available. 
So-called ‘multi-gene’ xenografts expressing human transgenes such as thrombomodulin 
and endothelial protein C receptor were introduced, which resulted in the reduction of 
thrombotic events and improvement of xenograft survival. Still, there are many limitations to 
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clinical translation of cardiac xenotransplantation. Along with technical challenges, zoonotic 
infection and physiological discordances are major obstacles. Social barriers including 
healthcare costs also need to be addressed. Although there are several remaining obstacles to 
overcome, xenotransplantation would surely become the novel option for millions of patients 
with end-stage heart failure who have limited options to traditional therapeutics.

Keywords: Xenotransplantation; Genetic engineering; Rejection; Immunosuppressant

INTRODUCTION

Xenotransplantation refers to transplantation of tissues or organs between different species.1) 
On January 7th, 2022, a historical event of pig-to-human cardiac xenotransplantation was 
performed using genetically engineered porcine xenograft and co-stimulation blockade-
based immunosuppression.2) Though the patient developed xenograft failure and succumbed 
to death on post-operative day 60,2) this event shed light on the cumulative effect of scientists 
and physicians who worked hard to unveil the underlying immunobiology of cross-species 
organ transplantation.

In this review, we aimed to summarize the historical landmarks of cardiac transplantation 
(Figure 1, Table 1), to discuss current understandings on the immunobiology of 
xenotransplantation, and to assess the current limitations to clinical translation.

HISTORY OF CARDIAC TRANSPLANTATION

Early days before modern understanding of transplantation
The first cardiac transplantation was a xenotransplantation using chimpanzee heart into a 
68-year-old male with a long history of hypertensive cardiovascular disease, which took place 
on January 23, 1964 by Dr. Hardy.3) The chimpanzee heart was too small to handle the large 
venous return and support the circulation, therefore, this innovative movement lasted for 90 
minutes. The first heart allotransplantation was performed three years later in Cape Town, 
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Figure 1. Historical landmarks of cardiac xenotransplantation. 
History of cardiac xenotransplantation rooted from the 1960s, and cumulating advances on immunosuppressive strategies, cross-species rejection biology, and 
genetic engineering provided solid grounds for the modern history of heart xenotransplantation. 
DAF = decay accelerating factor; Gal = α1,3-galactose; HLA = human leukocyte antigen.



South Africa. On December 3, 1967, historical surgery was performed by Dr. Barnard,7) and 
the 54-year-old male patient survived for 18 days. However, lack of immunosuppression and 
knowledge on allograft immunology resulted in rapid deterioration, and the patient was 
succumb to death. Another cardiac allotransplantation took place in Brooklyn, New York, 
3 days after Dr. Barnard’s adventure; this was the 1st allotransplantation performed in a 
cyanotic infant, and the patient died 6 and a half hours postoperatively in severe metabolic 
and respiratory acidosis.8)

Along with endeavors of cardiac surgeons of the 1960s, the period of time was also noted 
for milestone discoveries on ABO compatibility, human leukocyte antigen (HLA) typing,4) 
and immunosuppressive agents. Especially, understanding of ABO compatibility and 
cross-matching resulted in an improved early clinical outcome of renal transplantation.5) 
Moreover, after the clinical introduction of 6-mercaptopurine,25) azathioprine was developed 
and was proved to have a superior impact on the survival of organ graft in animal models.26) 
Introduction of lymphodepletion using antilymphoid products (nowadays antithymocyte 
globulin; ATG) further aided in prolongation of canine renal allograft survival.6)

The remarkable discovery of the first generation calcineurin inhibitor (cyclosporine) was a 
game changer9)10) in the history of cardiac transplantation. By the year of 1982, it was proved 
that the use of cyclosporine with low-dose steroid is superior to azathioprine and high-dose 
steroid, in the means of not only early morbid rejection of allotransplanted heart but also 
infectious complications.11)

The legendary challenge – “Baby Fae” and the first success
On the grounds of medical achievements in 1960s and 1970s, the first cardiac 
xenotransplantation of baboon heart in a neonate born with hypoplastic left heart syndrome 
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Table 1. Key events throughout the history of cardiac xenotransplantation
Year Summary
1964 First cardiac xenotransplantation (chimpanzee-to-human)3)

1964 HLA typing technology4)

1965 ABO cross-matching technology5)

1967 T-cell depletion using anti-thymocyte globulin6)

1967 First cardiac allotransplantation7)

1967 First cardiac allotransplantation in neonate8)

1976 Discovery of cyclosporine9)10)

1982 Use of cyclosporine after heart allotransplantation11)

1984 First neonatal cardiac xenotransplantation (baboon-to-human; “Baby Fae”)12)

1987 Discovery of tacrolimus14)

1991 Use of tacrolimus in heart allotransplantation15)

1991 Detailed description of mechanism of cross-species transplantation rejection16)

1995 First genetic engineering to combat hyperacute rejection17)

1998 First orthotopic cardiac xenotransplantation using transgenic human CD55 expressing xenograft (pig-to-baboon)18)

2003 Production of α1,3-galactosyltransferase-deficient pigs19)

2005 Xenotransplantation using α1,3-galactosyltransferase-deficient pigs and CD40-CD40L costimulation blockade (pig-to-baboon)20)

2016 Heterotopic cardiac xenotransplantation using TKO pig with transgenic expression of human CD46 and human thrombomodulin along with anti-CD40 
antibody: graft survival up to 945 days (pig-to-baboon)21)

2017 Production of inactivated porcine endogenous retrovirus pigs22)

2018 Introduction of non-ischemic continuous preservation of porcine xenograft to overcome perioperative cardiac xenograft dysfunction in orthotopic heart 
xenotransplantation (pig-to-baboon): graft survival up to 195 days22)

2021 Introduction of growth hormone receptor knockout to prevent post-transplantation xenograft overgrowth (pig-to-baboon)23)

2022 Orthotopic xenotransplantation using multigene edited pigs: graft survival up to 264 days (pig-to-baboon)24)

2022 First porcine-to-human cardiac xenotransplantation using 10 gene modified source2)

HLA = human leukocyte antigen; TKO = triple knock out.



(HLHS) took place on October 26, 1984.12) The infant’s blood type was O, Rh+, which is 
a very rare phenotype among baboons.27) Pretransplant immunologic testing including 
lymphocytotoxic crossmatching and mixed lymphocyte cultures showed that the infant’s 
serum was compatible and was predicted to be a weak responder to xenogeneic lymphocytes. 
The infant survived for 20 days, becoming the icon of organ xenotransplantation, named 
as “Baby Fae”. However, the patient ultimately succumbed to humoral factors refractory to 
cyclosporine-based immunosuppression. Postmortem examination of xenograft showed 
microvascular occlusions and interstitial hemorrhage, supporting the contribution of 
humoral rejection.13)

Meanwhile, another historic heart allotransplantation took place a year after “Baby Fae”. 
The recipient was a male infant born with HLHS, and orthotropic heart allotransplantation 
was performed using the heart from a brain-dead, ABO compatible infant on November 20, 
1985.28) Histocompatibility testing demonstrated compatible lymphocytotoxic crossmatching, 
and immunosuppression using cyclosporine, azathioprine and prednisone followed. The 
patient – also known as “Baby Moses” – grew up to be a healthy adult and is still living today.

MODERN-DAY UNDERSTANDING OF XENOTRANSPLANT 
REJECTION AND OVERCOMING STRATEGIES
Critical breakthrough on cardiac xenotransplantation was achieved by enhanced 
understanding on the immunobiology of xenograft rejection, novel immunosuppressive 
drugs, and utilization of advanced genetic engineering (Figure 2). In this section, we will 
discuss the key obstacles and means to overcome them (Table 2).

Overcoming hyperacute rejection
Hyperacute rejection occurs immediately after transplantation, and the culprit factor of 
this rejection is the natural, preformed antibody in human serum against carbohydrate 
antigens on xenogeneic endothelial cells.29) The major carbohydrates of porcine endothelial 
cells are three xenoantigens: α1,3-galactose (Gal),30) SDa blood group antigen (SDa), and 
N-glycolylneuraminic acid (Neu5Gc).31)32) Following the binding of natural antibodies into 
these xenoantigens, human complement activation ensues,16) resulting in endothelial 
cell activation, intravascular thrombosis, and eventually leading to xenograft injury. 
Histopathologic features of hyperacute rejection includes intravascular thrombosis, 
interstitial hemorrhage and myocyte death.33)

This antibody-mediated rejection represents inherent immunologic barriers of cross-
species transplantation. Endeavors to overcome this obstacle had started as early as 1990s 
and accelerated by rapid development of novel gene editing technologies including zinc 
finger nuclease,34) transcription activator-like effector nucleases,35) and clustered regularly 
interspaced short palindromic repeats (CRISPR).36)37)

Considering the 3 predominant porcine xenoantigens (Gal, SDa, and Neu5Gc) are produced 
by α1,3-galactosyltransferase (GGTA1), β1,4-N-acetylgalactosyltransferase (β4GalNT2), and 
N-acetylneuraminic acid hydroxylase (CMAH) respectively, efforts were taken to eliminate 
these enzymes from the potential xenograft animal models using gene editing technologies. 
First effort was taken in 2003, producing GGAT1 deficient pigs,19)20) and subsequent pig-to-
baboon renal xenograft experiments using GGAT1-knock out donors resulted in prolonged 
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Figure 2. Schematic illustration of the genetically engineered cardiac xenograft. 
Four genes were knocked out and six human genes were knocked in to produce the genetically engineered 
cardiac xenograft. This model has overcome major obstacles including hyperacute xenograft rejection and 
xenograft overgrowth, and proper regulation of complement pathway, coagulation cascade, and inflammatory 
further aided in the prolonged xenograft survival.

Table 2. Key obstacles of cross-species heart transplantation and solutions
Obstacles and mechanism Solution
Hyperacute rejection

Porcine carbohydrate antigens - Knock-out of responsible enzymes: GGTA1, β4GalNT2, and CMAH
Complement cascade - Transgenic expression of human CD55 (DAF) and CD46 (membrane cofactor protein)
Coagulation abnormality - Transgenic expression of human TBM and EPCR

Antibody mediated rejection
T-cell dependent antibody production by activated B-cells - CD40-CD40L co-stimulation blockade using anti-CD40 antibody

Cellular rejection
B-cell and T-cell activation - B- and T-cell depletion at induction

- Immunosuppressant
Macrophage activation - Transgenic expression of human CD47

Post-transplantation management
Perioperative cardiac xenograft dysfunction - Non-ischemic continuous preservation
Post-transplantation xenograft growth - Strict blood pressure control

- Early steroid tapering
- mTOR inhibitor administration
- Growth hormone receptor knockout

Zoonotic viral transmission
PERV - PERV polymerase knockout pigs

CMAH = N-acetylneuraminic acid hydroxylase; DAF = decay accelerating factor; EPCR = endothelial protein C receptor; GGTA1 = α1,3-galactosyltransferase; PERV 
= porcine endogenous retrovirus; mTOR = mammalian target of rapamycin; TBM = thrombomodulin; β4GalNT2 = β1,4-N-acetylgalactosyltransferase.



survival of up to 83 days.38) Additional knock out of other major porcine carbohydrate ensued, 
producing triple knock out (TKO) pig models which lacks GGTA1/β4GalNT2/CMAH genes.39)

Meanwhile, different approaches were also taken by scientists to tackle the step after 
antibody binding to xenoantigens—the complement cascade. Complement activation 
and endothelial cell activation still occurred, even in the setting of TKO xenograft model, 
presumably due to residual antibody binding to minor xenoantigens or as a result of 
ischemic/reperfusion injury.40) Classical pathway of complement activation starts with 
antibody binding to xenograft’s endothelial cells and activation of C1 esterase by antibody’s 
Fc portion; subsequent activation of C3 convertase results in the production of C3b which 
in turn activates C5 convertase, finally forming the membrane attack complex, which 
destroys endothelial cells.41) Physiologically, human CD55 (decay accelerating factor; DAF) 
and CD46 (membrane cofactor protein) cleaves C3 and C5 convertase, thereby maintaining 
homeostasis. Therefore, to reduce complement-mediated xenograft injury, efforts were taken 
for transgenic expression of human CD55 and CD46 in pigs, which resulted in improved 
xenograft rejection-free survival in animal models.18)42-44)

Beyond complement cascade, additional genetic engineering technologies were implemented 
to inhibit porcine endothelial cell activation itself. Under physiologic circumstances, 
whenever endothelial cell injury happens, heparin sulfate is released from the endothelial 
cells and human thrombomodulin (TBM) prevent thrombus formation in vivo by activating 
anticoagulant protein C.45) Endothelial protein C receptor (EPCR) on endothelial cells also 
augment activation of protein C. To mimic this physiological counterbalance system in 
the porcine xenograft,46) transgenic expression of human TBM and EPCR was tried, which 
resulted in significant augmentation of protein C, reduction of graft thrombosis, and 
prolongation of xenograft survival.47)48)

Overcoming antibody-mediated rejection
After abrogation of risk for hyperacute rejection, major obstacle against successful 
xenotransplantation lies within the possibility of antibody-mediate rejection49) which occurs 
within days to weeks after transplantation. This type of rejection is mediated by sensitized 
antibody-producing cells; antibody production occurs through recognition, processing 
and presentation of xenoantigens by antigen presenting cells (APCs) by means of major 
histocompatibility complex (MHC)-peptide complexes. Production of xenoantigen specific 
antibodies is done by interaction between B cells and CD4+ helper T cells. Throughout this 
T-cell dependent antibody production by activated B-cells, CD40-CD40L signaling plays the 
most critical role;50)51) CD40 is expressed on B cells and CD4+ helper T cells express CD40L, 
and this interaction results in activation of B-cells and production of humoral antibody 
against the processed antigen.52)

The importance of CD40-CD40L in xenotransplant immunobiology was highlighted by 
the experiences suggesting the immunosuppressive strategies used in allotransplantation 
(maintenance therapy using mycophenolate mofetil [MMF], tacrolimus,14) and corticosteroid) 
were not enough to avoid xenograft.49)53) Instead, xenotransplantation requires blockade of 
CD40-CD40L pathway; preclinically, this blockade resulted in impaired B-cell activation by 
xenoantigens, immunoglobulin class switching and germinal center reaction.54) Accordingly, 
blockade of CD40-CD40L co-stimulation using chimeric 2C10R4 anti-CD40 monoclonal 
antibody,21) along with MMF, B- and T-cell depletion, and complement depletion has resulted in 
a marked prolongation of xenograft survival, up to 945 days in a heterotopic xenograft model.55)
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Overcoming cellular rejection
Cellular rejection is a T-cell mediated mechanism which occurs when processed xenoantigens 
by APCs are recognized by cognate receptors, followed by T-cell activation and tissue injury. 
Swine leukocyte antigen (SLA) is swine counterpart of MHC, and it is known that SLA can 
provoke and induce human T-cell proliferation, for there exists 70% sequence homology 
between SLA and HLA.39)56)57)

In addition to T-cells, macrophages also contribute to xenogenic graft rejection. Macrophage 
activation is physiologically controlled by the inhibitory interaction between signal-
regulatory protein alpha (SIRPα) and CD4758) (also known as ‘do not eat me signal’); lack 
of CD47 on porcine endothelial cells can induce macrophage activation. To ameliorate the 
actions of macrophages, transgenic expression human CD47 xenografts is implemented in 
multigene animal models.24)

RECENT SUCCESS AND REMAINING CHALLENGES

Porcine to baboon heterotopic cardiac xenotransplantation
In 2016, a significant improvement was reported in the history of cardiac 
xenotransplantation. Mohiuddin et al.55) reported that they heterotopically xenotransplanted 
the hearts from TKO pigs with transgenic expression of human CD46 and human TBM into 
baboons. Regarding immunosuppressive regimen, they used ATG and anti-CD20 before 
transplantation to deplete T- and B-cells, and anti-CD40 monoclonal antibody (clone 
2C10R4) was also administered for co-stimulation blockade at induction phase. During the 
maintenance, anti-CD40 antibody, MMF, and corticosteroid administered.

A total of 5 baboons received porcine hearts and marked prolonged graft survivals (median 
298 days and longest 945 days) were noted.55) Specifically, humoral rejection and systemic 
coagulopathy were significantly reduced, which was confirmed by graft biopsy. This success 
highlighted the key importance of TKO approach, transgenic complement regulation protein 
expression, and CD40-CD40L blockade in the prevention of xenorejection, paving the way 
for additional trials including life-supporting, orthotopic cardiac xenotransplantation.

Porcine to baboon orthotopic cardiac xenotransplantation
Subsequent success in orthotopic cardiac xenotransplantation from porcine to baboon 
followed.22)24) Längin et al.22) used TKO pig model with human CD46 and TBM expression and 
preserved the graft into non-ischemic preservation with continuous perfusion (NICP) before 
implantation surgery. NICP was introduced to reduce a complication called perioperative 
cardiac xenograft dysfunction (PCXD), which will be described in detail later in this review. 
This approach using NICP resulted in consistent life-supporting function of orthotopic 
xenograft up to 195 days.22)

Another milestone success used a novel multigene modified pig. TKO model was used 
as backbone, and additional strategies were implemented24)59): transgenic expression of 
human CD46 and DAF for complement regulation, human TBM and EPCR for coagulation 
regulation, and human CD47, and hemeoxygenase 1 (HO-1) for inflammatory modulation. 
Moreover, knock out of growth hormone receptor (GHR) was also performed to control 
post-transplantation xenograft growth, which will be discussed later in this review. 
Immunosuppression was largely similar to the regimen previously used in heterotopic 
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model55): B-, T-cell and complement depletion along with CD40-CD40L signaling 
blockade during the induction phase, and maintenance using anti-CD40 antibody, MMF, 
corticosteroids, and anti-inflammatory agents (interleukin-6 inhibitor and tumor necrosis 
factor α inhibitor). This orthotopic multi-gene xenografts remained highly functional up 
to 264 days; however, post-transplantation xenograft growth was inevitable despite GHR 
knockout, still leaving additional challenges behind.24)

Porcine to non-human primate heterotopic cardiac xenotransplantation in Korea
The current research on the cardiac xenotransplantation in Korea will be summarized 
in 3 aspects. The first is the status of production and breeding of transgenic pigs to be 
used as donors of the xenotransplantation. The second will be in-vivo testing of the 
immunocompatibility of pig hearts and the final step would be orthotopic cardiac graft to 
check the physiologic and functional aspect of the graft heart.

The first part of the research was performed by the National Institute of Animal Science of 
Rural Development Administration and 2 companies, Optipharm Inc and Mgenplus. They 
produced various kinds of transgenic pigs for xenotransplantation and the current available 
transgenic pigs are listed in the review paper.60) Park and associates in 201960) reviewed the 
history of the research on xenotransplantation in Korea and summarized the contribution of 
Xenotransplantation Research Center at the Seoul National University Hospital.

The second part of the research was on the heterotopic cardiac graft using porcine hearts to 
non-human primates. Lee et al.61) started xenotransplantation in 2012 to place the pig heart 
to Cynomolgus monkey, heterotopically. The aorta of the pig heart was anastomosed to 
abdominal aorta and the pulmonary trunk of pig heart was connected to the inferior vena cava 
of the recipients such that the bold perfused coronary arteries through aorta drained to the 
coronary sinus, right atrial and ventricular chambers to the pulmonary trunk to drain back 
to the venous system of the monkey. The left ventricular chamber therefore was not used as a 
pump but the porcine myocardium was perfused by the monkey’s blood. In their experiment 22 
monkeys received genetically manipulated pigs’ hearts. The genetic status of pigs was GGTA1 
knockout (GalT KO) pigs and 6 of those pigs were additionally expressed with human CD46 or 
CD39 or CD73. The pigs weighed from 3 to 10 kg, with the hearts weighing 23 to 71 g. Recipients 
were Cynomolgus monkey, and their body weights were 3 to 7 kg. For transplantation, ABO 
blood types were matched. For the induction of immune suppression, ATG and rituximab 
were given preoperatively, followed by maintenance therapy with tacrolimus, mycophenolate 
mofetil and methylprednisone. Anti-CD154 monoclonal antibody as costimulation blockade 
and cobra venom factor to inhibit the complement activation were also used postoperatively. 
The mean graft survival has been 16±16.27 days and the longest survival was 60 days. The mean 
graft survival was significantly longer in cases since 2014. Double or triple genetic manipulated 
hearts exhibited significantly better survival (11.63±11.29 days in GalT KO pig; 30.83±20.34 
days in double or triple genetic edited pigs; p=0.03). For example, the GalT KO pig with human 
CD46 expression resulted in the longest survival up to 60 days. Investigation of effective and 
optimal target genes is important for further progression toward better results is important.

The third part is planned as the orthotopic cardiac xenotransplanation experiments, for 
which large size non-human primates, such as baboon or chimpanzee, should be available 
in Korea. Because the body size of Cynomolgus monkeys is small compared to baboon, their 
chest cage is not enough for the rapid growing pig’s heart. Multiple transgenic pigs especially 
expressing human thrombomodulin are another obstacle.
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The first porcine to human orthotopic cardiac xenotransplantation
On January 7, 2022, a historical first porcine to human orthotopic cardiac 
xenotransplantation took place.2) A 57-year-old man with a history of hypertension and 
nonischemic cardiomyopathy developed severe heart failure. Left ventricular ejection 
fraction was only 10% at presentation, and despite multiple measures including inotropic 
and intraaortic balloon pump, the patient was subject to venoarterial extracorporeal 
membrane oxygenation (ECMO). After the approval from the United States Food and Drug 
Administration, hospital ethics committee, and institutional review board, the patient 
provided the written informed consent for receiving the first genetically engineered pig heart.

The porcine heart was harvested from the 10-gene edited pig. Four pig genes were knocked 
out including GGTA1, β4GalNT2, and CMAH to eliminate major pig xenoantigens, and 
GHR to prevent xenograft overgrowth. Six human genes (CD55, CD46, CD47, HO1, EPCR, 
and TBM) were knocked-in to control complement cascade, inflammatory reaction, and 
abnormal coagulation. Immunosuppression regimen included rituximab and ATG for B- 
and T-cell depletion, and C1 esterase inhibitor to control complement pathway. Anti-CD40 
monoclonal antibody (KPL-404) was administered as the mainstay regimen to block CD40-
CD40L co-stimulation pathway, accompanied by methylprednisolone pulse. Maintenance by 
MMT, KPL-404 and tapered methylprednisolone ensued.

Hospital course after xenotransplantation is summarized in Table 3. The first endomyocardial 
biopsy performed at postoperative day (POD) 34 showed normal histologic characteristics 
with no evidence of rejection. Starting from POD 43, the patient became more somnolent, 
and weekly plasma microbial cell-free DNA (mcfDNA) monitoring gradually revealed rising 
titer of porcine cytomegalovirus (pCMV), suggestive of infection. Diffuse airway ulcerations 
were noted on bronchoscopy, however, bronchoscopic biopsy did not reveal and viropathic 
effect with negative staining for Grocott methenamine silver. Intense treatments including 
antiviral agents ensued, resulting in clinical improvement by POD 47.
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Table 3. Clinical course of the first porcine-to-human cardiac xenotransplantation
Postoperative day Event
2 Extubation
4 Decannulation of extracorporeal membrane oxygenation
10 Exploratory laparotomy due to sudden abdominal pain

• Small bowel thickening without acute ischemia/perforation
• Bacterial peritonitis

20 pCMV first detected in mcfDNA
34 1st endomyocardial biopsy

• Normal histologic characteristics
• No evidence of rejection

43 Intubation; diffuse ulceration on airways with no histopathologic evidence of viral infection
47 Extubation; improved airway ulceration
49 Intubation and vasopressors due to hypotension → ECMO

• Echocardiography: increased LV wall thickness and reduced LV chamber size
50 2nd endomyocardial biopsy

• Focal capillary damage but no C4d staining
• No cellular infiltrate

Rising titers of xenograft-specific IgM and IgG
56 3rd endomyocardial biopsy

• C4d staining and antibody-mediated rejection grade 1
• Capillary damage and myocyte necrosis

60 Withdrawal of life sustaining modalities
ECMO = extracorporeal membrane oxygenation; Ig = immunoglobulin; LV = left ventricle; mcfDNA = microbial 
cell-free DNA; pCMV = porcine cytomegalovirus.



However, by POD 49, sudden deterioration of cardiac function became apparent; left 
ventricle (LV) thickness was markedly increased leaving reduced LV chamber size. 
Venoarterial ECMO was initiated, and second endomyocardial biopsy was performed the 
day after, which showed no evidence of antibody mediated rejection (AMR)62) or acute 
cellular rejection.63) Instead, focal capillary damage with extravasated red blood cells (RBCs) 
and interstitial edema were noted, raising concern for the atypical manifestation of AMR, 
therefore, plasmapheresis was performed along with intravenous immune globulin and 
rituximab administration.

The third biopsy was performed at day 56, which showed AMR of International Society 
for Heart and Lung Transplantation grade 162) and myocyte necrosis. Despite the support 
from ECMO, there was no evidence of change in the graft status by echocardiography, 
suggesting the irreversibly injury to the xenograft. At POD 60, life sustaining modalities 
were withdrawn. Postmortem examination of the xenograft was noted by markedly increased 
heart weight, scattered myocyte necrosis, thin fibrosis, and endothelial cell damage with RBC 
extravasation.

Though immunologic rejection still remains as the major culprit causing the graft failure, 
the postmortem findings were inconsistent with traditional knowledge of AMR, in that 
capillary injury occurred without concomitant complement (C4d) deposition and that no 
evidence of activated CD68+ mononuclear cells were seen. Moreover, a sudden increase in 
LV thickness with diastolic dysfunction without systolic failure remains unexplained.2)64) 
Zoonotic infection by pCMV may have contributed to the failure; though no evidence of viral 
infection was found at bronchoscopic biopsy, postmortem in situ hybridization revealed the 
evidence of pCMV infection in the xenograft.64) Though there remain unresolved problems, 
this historical event illustrates the power of genetic engineering and provides the hope for 
clinical application of xenotransplantation.

LIMITATIONS TO CLINICAL TRANSLATION

Perioperative cardiac xenograft dysfunction
Apart from immunologic rejections, previous work on xenotransplantation also 
addressed some important pitfalls and limitations that hinder clinical application of 
xenotransplantation. One of the limitations include PCXD. PCXD refers to a phenomenon 
of rapidly developing loss of cardiac function within the first 48 hours of implantation.22) 
The reported incidence of PCXD ranges from 40% to 60%. PCXD occurs independently of 
hyperacute of acute rejection, and inflammatory insult from cardiopulmonary bypass system 
and ischemic-reperfusion injury are regarded as the potential cause of PCXD.22)65)66)

Exciting breakthrough of PCXD emerged by applying NICP when preserving the harvested 
xenograft until implantation. Xenografts are preserved with hyperoncotic cardioplegic 
solution which contains packed RBCs, human serum albumin, dextran 40, inotropes, and 
hormones.22)65)66) The NICP method was the key technique which enabled up to 195 days of 
orthotopic porcine to baboon graft survival,22) and clinical superiority of this method over 
crystalloid mediated preservation was further supported by the recent clinical trial of NICP 
during heart allotransplantation process.67)
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Post-transplantation xenograft growth
One of the important reasons why pigs have become the ideal donors for cardiac 
xenotransplantation is that pigs have similar heart size and anatomy. In the first porcine-to-
human heart xenotransplantation, the donor pig weighed 110 kg, and it was assumed that the 
pig’s heart would be suitable for the 85 kg weighing recipient.2)

However, it is reported that the porcine xenograft continues to grow in the recipient’s body 
after implantation due to both intrinsic and extrinsic factors.22)68) Variable measures were 
introduced to reduce this detrimental overgrowth: stringent control of blood pressure, early 
tapering of corticosteroids to reduce cardiac hypertrophy, and administration of mTOR 
inhibitor to minimize myocardial hypertrophy.22)

More recently, GHR-knock out strategies were developed, and was proved to be effective even 
without concurrent administration of additional medications.68) On the grounds of these 
experiences, the GHR was knocked out in the xenograft in the first porcine-to-human heart 
xenotransplantation.2) Since the long term data on the growth of this xenograft is lacking, the 
post-transplantation xenograft growth in human recipients remains to be elucidated.

Zoonotic viral transmission
Zoonotic viral transmission is another obstacle of clinical translation of 
xenotransplantation,69) for this is closely related with social barriers and major public 
health concerns. Specific pathogens of concern include porcine endogenous retroviruses 
(PERVs), pCMV, porcine lymphotropic herpesvirus, and porcine circoviruses. PERVs are most 
studied microorganism and they are endemic to pigs, thus cannot be eliminated. There are 
3 types of PERVs – PERV-A, PERV-B, and PERV-C. Until now, there is no evidence of harmful 
risk of PERVs to humans, and PERV transmission from porcine to baboon has never been 
documented.70-73) However, PERV-A and PERV-B can infect human cells, therefore, concern for 
zoonotic transmission cannot be underestimated.

Evidence of pCMV in xenografts is associated with reduced xenograft survival according to 
studies on non-human primates.74)75) pCMV was also detected in the first porcine-to-human 
heart xenotransplantation by weekly mcfDNA monitoring during the hospital course2) and 
postmortem in situ hybridization assay,64) however, the contribution of this virus on the 
clinical deterioration of the patient still remains to be elucidated.

Possible solutions to reduce the risk of zoonotic viral transmission includes production of 
low-virus-producing pigs, RNA interference targeting the PERV activity in porcine cells, and 
knocking out PERV polymerase gene by genetic engineering.22)75)

Social and ethical barriers
Major ethical concern regarding xenotransplantation is about animal rights.76) Specifically, 
putting the rights of human beings above all the rights of the other species could be viewed 
as too anthropocentric, and growing concern lies on the magnitude and extent of genetic 
modification. Porcine organs are the most well studied xenograft models, however, handling 
pigs is forbidden in certain cultural and religious background, therefore fair and proper 
allocation of porcine xenografts would be very challenging.

Though overall disease burden of heart failure is significant, clinical implementation of 
xenotransplantation would require markedly higher amount of medical expenditure, for it 
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is based on the combined efforts of complex genetic engineering, donor animal care, costly 
immunosuppressive medications, and post-operative monitoring and care. In depth cost-
effectiveness and cost-benefit analyses should be addressed.

CONCLUSIONS

History of cardiac xenotransplantation rooted from the 1960s. Major advances on 
xenotransplantation were achieved by understanding the immunobiology of xenograft rejection, 
the development of immunosuppressive drugs, and the utilization of advanced genetic 
engineering. Multigene xenograft preparation along with CD40-CD40L blockade successfully 
resulted in the 60 days of survival in the first pig-to-human cardiac xenotransplantation. The cause 
of graft failure in this historical challenge is to be elucidated. Although there are several remaining 
obstacles to overcome, xenotransplantation would become the novel option for millions of 
patients with end-stage heart failure who have limited options to traditional therapeutics.
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