DOI QR코드

DOI QR Code

Induction of Anti-Aquaporin 5 Autoantibody Production by Immunization with a Peptide Derived from the Aquaporin of Prevotella melaninogenica Leads to Reduced Salivary Flow in Mice

  • Ahreum Lee (Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Duck Kyun Yoo (Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • Yonghee Lee (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Sumin Jeon (Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Suhan Jung (Department of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Jinsung Noh (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Soyeon Ju (Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • Siwon Hwang (Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • Hong Hee Kim (Department of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Sunghoon Kwon (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Junho Chung (Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine) ;
  • Youngnim Choi (Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University)
  • 투고 : 2021.06.18
  • 심사 : 2021.10.14
  • 발행 : 2021.10.31

초록

Sjögren's syndrome (SS) is an autoimmune disease characterized by dryness of the mouth and eyes. The glandular dysfunction in SS involves not only T cell-mediated destruction of the glands but also autoantibodies against the type 3 muscarinic acetylcholine receptor or aquaporin 5 (AQP5) that interfere with the secretion process. Studies on the breakage of tolerance and induction of autoantibodies to these autoantigens could benefit SS patients. To break tolerance, we utilized a PmE-L peptide derived from the AQP5-homologous aquaporin of Prevotella melaninogenica (PmAqp) that contained both a B cell "E" epitope and a T cell epitope. Repeated subcutaneous immunization of C57BL/6 mice with the PmE-L peptide efficiently induced the production of Abs against the "E" epitope of mouse/human AQP5 (AQP5E), and we aimed to characterize the antigen specificity, the sequences of AQP5E-specific B cell receptors, and salivary gland phenotypes of these mice. Sera containing anti-AQP5E IgG not only stained mouse Aqp5 expressed in the submandibular glands but also detected PmApq and PmE-L by immunoblotting, suggesting molecular mimicry. Characterization of the AQP5E-specific autoantibodies selected from the screening of phage display Ab libraries and mapping of the B cell receptor repertoires revealed that the AQP5E-specific B cells acquired the ability to bind to the Ag through cumulative somatic hypermutation. Importantly, animals with anti-AQP5E Abs had decreased salivary flow rates without immune cell infiltration into the salivary glands. This model will be useful for investigating the role of anti-AQP5 autoantibodies in glandular dysfunction in SS and testing new therapeutics targeting autoantibody production.

키워드

과제정보

This study was supported by the National Research Foundation of Korea (Daejun, Korea) through the grants 2018R1A5A2024418 and 2020R1A2C2007038 awarded to Youngnim Choi.

참고문헌

  1. Thorne I, Sutcliffe N. Sjogren's syndrome. Br J Hosp Med (Lond) 2017;78:438-442. 
  2. Christodoulou MI, Kapsogeorgou EK, Moutsopoulos HM. Characteristics of the minor salivary gland infiltrates in Sjogren's syndrome. J Autoimmun 2010;34:400-407. 
  3. Routsias JG, Tzioufas AG. Sjogren's syndrome--study of autoantigens and autoantibodies. Clin Rev Allergy Immunol 2007;32:238-251. 
  4. Scofield RH, Fayyaz A, Kurien BT, Koelsch KA. Prognostic value of Sjogren's syndrome autoantibodies. J Lab Precis Med 2018;3:92. 
  5. Alam J, Koh JH, Kim N, Kwok SK, Park SH, Song YW, Park K, Choi Y. Detection of autoantibodies against aquaporin-5 in the sera of patients with primary Sjogren's syndrome. Immunol Res 2016;64:848-856. 
  6. Matsuzaki T, Susa T, Shimizu K, Sawai N, Suzuki T, Aoki T, Yokoo S, Takata K. Function of the membrane water channel aquaporin-5 in the salivary gland. Acta Histochem Cytochem 2012;45:251-259. 
  7. Alam J, Koh JH, Kwok SK, Park SH, Park K, Choi Y. Functional epitopes for anti-aquaporin 5 antibodies in Sjogren syndrome. J Dent Res 2017;96:1414-1421. 
  8. Jeon S, Lee J, Park SH, Kim HD, Choi Y. Associations of anti-aquaporin 5 autoantibodies with serologic and histopathological features of Sjogren's syndrome. J Clin Med 2019;8:1863. 
  9. Nemazee D. Mechanisms of central tolerance for B cells. Nat Rev Immunol 2017;17:281-294. 
  10. Abramson J, Husebye ES. Autoimmune regulator and self-tolerance - molecular and clinical aspects. Immunol Rev 2016;271:127-140. 
  11. Alam J, Kim YC, Choi Y. Potential role of bacterial infection in autoimmune diseases: a new aspect of molecular mimicry. Immune Netw 2014;14:7-13. 
  12. Igoe A, Scofield RH. Autoimmunity and infection in Sjogren's syndrome. Curr Opin Rheumatol 2013;25:480-487. 
  13. Bartoloni E, Alunno A, Gerli R. The dark side of Sjogren's syndrome: the possible pathogenic role of infections. Curr Opin Rheumatol 2019;31:505-511. 
  14. Maslinska M. The role of Epstein-Barr virus infection in primary Sjogren's syndrome. Curr Opin Rheumatol 2019;31:475-483. 
  15. Alam J, Lee A, Lee J, Kwon DI, Park HK, Park JH, Jeon S, Baek K, Lee J, Park SH, et al. Dysbiotic oral microbiota and infected salivary glands in Sjogren's syndrome. PLoS One 2020;15:e0230667. 
  16. Alam J, Choi YS, Koh JH, Kwok SK, Park SH, Song YW, Park K, Choi Y. Detection of autoantibodies against aquaporin-1 in the sera of patients with primary Sjogren's syndrome. Immune Netw 2017;17:103-109. 
  17. Lee A, Choi Y. Induction of anti-aquaporin 5 autoantibodies by molecular mimicry in mice. Int J Oral Biol 2020;45:211-217. 
  18. Kim N, Shin Y, Choi S, Namkoong E, Kim M, Lee J, Song Y, Park K. Effect of antimuscarinic autoantibodies in primary Sjogren's syndrome. J Dent Res 2015;94:722-728. 
  19. Barbas CF 3rd, Burton DR, Scott JK, Silverman GJ. Phage display. In: A Laboratory Manual. Suffolk County, NY: Cold Spring Harbor Laboratory Press; 2001.
  20. Yoo DK, Lee SR, Jung Y, Han H, Lee HK, Han J, Kim S, Chae J, Ryu T, Chung J. Machine learning-guided prediction of antigen-reactive in silico clonotypes based on changes in clonal abundance through biopanning. Biomolecules 2020;10:421.
  21. Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res 2017;27:491-499. 
  22. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 2014;30:614-620. 
  23. Kim SI, Noh J, Kim S, Choi Y, Yoo DK, Lee Y, Lee H, Jung J, Kang CK, Song KH, et al. Stereotypic neutralizing VH antibodies against SARS-CoV-2 spike protein receptor binding domain in patients with COVID-19 and healthy individuals. Sci Transl Med 2021;13:eabd6990. 
  24. Ye J, Ma N, Madden TL, Ostell JM. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res 2013;41:W34-W40. 
  25. Lefranc MP, Lefranc G. Immunoglobulins or antibodies: IMGT® bridging genes, structures and functions. Biomedicines 2020;8:319. 
  26. Jin J, Park G, Park JB, Kim S, Kim H, Chung J. An anti-EGFR × cotinine bispecific antibody complexed with cotinine-conjugated duocarmycin inhibits growth of EGFR-positive cancer cells with KRAS mutations. Exp Mol Med 2018;50:1-14. 
  27. Kim SI, Kim S, Shim JM, Lee HJ, Chang SY, Park S, Min JY, Park WB, Oh MD, Kim S, et al. Neutralization of Zika virus by E protein domain III-Specific human monoclonal antibody. Biochem Biophys Res Commun 2021;545:33-39. 
  28. Levin MH, Sullivan S, Nielson D, Yang B, Finkbeiner WE, Verkman AS. Hypertonic saline therapy in cystic fibrosis: Evidence against the proposed mechanism involving aquaporins. J Biol Chem 2006;281:25803-25812. 
  29. Xu JL, Davis MM. Diversity in the CDR3 region of VH is sufficient for most antibody specificities. Immunity 2000;13:37-45. 
  30. Briney B, Inderbitzin A, Joyce C, Burton DR. Commonality despite exceptional diversity in the baseline human antibody repertoire. Nature 2019;566:393-397. 
  31. Collins AM, Wang Y, Roskin KM, Marquis CP, Jackson KJ. The mouse antibody heavy chain repertoire is germline-focused and highly variable between inbred strains. Philos Trans R Soc Lond B Biol Sci 2015;370:20140236. 
  32. Choi SS, Jang E, Jang K, Jung SJ, Hwang KG, Youn J. Autoantibody-mediated dysfunction of salivary glands leads to xerostomia in SKG mice. Immune Netw 2019;19:e44. 
  33. Deshpande V. IgG4 related disease of the head and neck. Head Neck Pathol 2015;9:24-31. 
  34. Lin X, Rui K, Deng J, Tian J, Wang X, Wang S, Ko KH, Jiao Z, Chan VS, Lau CS, et al. Th17 cells play a critical role in the development of experimental Sjogren's syndrome. Ann Rheum Dis 2015;74:1302-1310. 
  35. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, et al. Proteomics. Tissue-based map of the human proteome. Science 2015;347:1260419. 
  36. Tsymala I, Nigritinou M, Zeka B, Schulz R, Niederschick F, Matkovic M, Bauer IJ, Szalay M, Schanda K, Lerch M, et al. Induction of aquaporin 4-reactive antibodies in Lewis rats immunized with aquaporin 4 mimotopes. Acta Neuropathol Commun 2020;8:49.