• Title/Summary/Keyword: Axle Noise

Search Result 70, Processing Time 0.023 seconds

Railway structure health monitoring using innovative sensing technologies (첨단계측센서를 이용한 철도 구조물의 모니터링)

  • Lee, Kyu-Wan;Jung, Sung-Hoon;Park, Eun-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.772-777
    • /
    • 2008
  • Recent development of fiber optic sensors and wireless sensor technology, made structural health monitoring of railway structures cost effective. In this paper, a micro bending fiber optic rail pad sensors are evaluated for train axle force measurement. In order to assess the usability of FBG fiber optic sensors for short-term bridge measurement, the FBG sensors and conventional strain gauges are installed at the same points and the strain results are compared. Also the impact factors are calculated using the FBG strain responses and the results are compared with the conventional sensor responses. A running KTX train was instrumented with wireless sensor system to measure the vibration characteristics and the results are compared with conventional wire sensor system.

  • PDF

An Experimental Study on the Torsional Excitation Source of the Vehicle Driveline (차량 동력 전달계의 비틀림 가진원에 관한 실험적 연구)

  • Chang, Il-Do;Kim, Byoung-Sam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.865-870
    • /
    • 2005
  • Torque fluctuation of the engine and angular velocity variation of propeller shaft is the main excitation source for torsional vibration in the vehicle driveline. Experimental model for engine system is constructed with 4 cylinder 4 cycle diesel engine including Motor-Propeller Shaft-Axle-Wheel system. The angular velocity is measured by magnetic pickup and FV converter at the engine flywheel and propeller shaft. This paper presents the theoretical mechanism of these excitation sources and it is identified by the experimental methods.

Vibration Mode Analysis of Power Train on a Rear Wheel Drive Car (후륜구동차량의 동력전달장치의 고유진동형 분석)

  • Stuehler, Waldemar;You, Chung-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1894-1899
    • /
    • 2000
  • The Roadway caused through Power Train engine vibration and bad ride comfort. It is very important to analyze the vibratory characteristics. The mathematical models on the Power Train, which is composed of engine-/transmission block, universal joint shaft, differential, rear axle arm and wheels, are developed and is verified by the experiments. This Paper describes the coupling influence occurred through a complete drive system for the power train. Dies study is carried out computationally with a calculation program and experimentally with the aid of the mode analysis.

  • PDF

Design and Implementation of weight scaler of loading for multi-axles (다축 화물자동차의 축하중을 이용한 화물중량측정기 설계 및 구현)

  • Han, Jung-Yul;Yoo, Soo-Yeub;Kim, Ki-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.228-232
    • /
    • 2002
  • This paper is reporting the whole process of developing a weight measuring scaler of truck and trailer system for static and dynamic condition. The sensors attached on the top of springs each wheels. Acquisition and data processing performs accurate data extraction from noise environment, filtering and estimation. Weight information was highly distorted with noise and perturbation. Hence the perturbation was classified several categories and evaluated for accurate signal extract. The final products supply accurate and easy readable data of load weight for truck. It supplies total weight as well as loading condition of each axle. It is expected that it give the information to the truck operator of proper amount loading and safe condition to drive with it.

  • PDF

Reciprocating pump modeling for diagnosis (이상 진단을 위한 왕복동식 펌프 모델링)

  • Lee, Jong Kyeom;Chai, Jang bom;Lee, Jin Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.330-331
    • /
    • 2014
  • A mathematical model is suggested for diagnosis on a reciprocating pump. To the end, kinematic, thermodynamic and fluidic analyses are carried out for a simplified reciprocating pump model. The pressure inside the cylinder is expressed as a function of the rotation angle of a crank axle. The mathematical model consists of one cylinder with suction and discharge valves and an accumulator. The effect of valve leakage on the discharge angle is investigated. The discharge angle difference between normal state and leakage state increases with the leakage extent.

  • PDF

Vibration Analysis Model Development of the Solid Axles (일체형 차축의 진동 해석 모델 개발)

  • Jun, Kab-Jin;Choi, Sung-Jin;Park, Tae-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.147-150
    • /
    • 2005
  • The torsion beam axle type is widely used in the rear suspension for small passenger car because of low cost, good performance and etc. The FE and dynamic analysis using the computer are very helpful for the efficiency of the torsion beam design. First of all, the reliability on the computational model must be verified for the analysis. In this study, The FE model of the torsion beam was verified according to comparison with he test data. And after making the flexible body using the FE model, the dynamic characteristic of the tubular type torsion beam axles was compared with that of the V-beam type.

  • PDF

An Experimental Study of Squeal Noise Characteristics for Railway Using a Scale Model Test Rig (축소 모델 실험장치를 이용한 철도 스킬소음의 특성에 대한 실험적 연구)

  • Kim, Jiyong;Hwang, Donghyeon;Lee, Junheon;Kim, Kwanju;Kim, Jaechul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.5
    • /
    • pp.352-360
    • /
    • 2015
  • Squeal noise is a harsh, high-pitched sound that occurs when railways are running at sharp curve tracks. The cause of squeal noise is known to be the transient lateral traction force between wheel and rail. Field measurements are too difficult to control the parameters. Thus, the scaled test rig should have been made in order to investigate the generating mechanism of squeal noise. The unique feature of our test rig, HSTR(Hongik Squeal Testing Rig), is that DOFs of its wheelset are as close to as those of the real railway. The attack angle and running speed of the rail roller are controlled in real time for simulating a transient characteristic of driving curve. The environment conditions, such as given axle load, running speed, and wheel's yaw angle have been identified for generating squeal noise and the squeal noise itself has been measured. The relation between wheel creepage and creep force in lateral direction and the criteria for squeal noise have been investigated, which results has been verified by finite element method.

Analysis and Small Scale Model Expriment on the Vertical Vibration of the KT-23 Type Passenger Vehicle (KT-23형 여객 차량의 상하 진동 해석 및 축소모형 실험)

  • 최경진;이동형;장동욱;권영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.266-273
    • /
    • 2003
  • The purpose of this study is to obtain the effects of the parameters of the suspension system in railway rolling-stock for KT-23 type Passenger vehicle. According to the analysis and the small scale model car test. optimal condition was obtained for the stiffness ratio of secondary spring to primary spring of the suspension system and the mass ratio of the bogie frame to the car body. The analysis of the study shows that if the car body mass is increased or secondary stiffness Is lowered, the vertical vibration level is reduced and the passenger comfort can be improved. Especially, strong peaks are occurred in the frequencies corresponding to the rotational speed of driving axle and vehicle wheel. Hence, in order to obtain the dynamic characteristics through the small scale model car, the driving method of the vehicle on the test bench, rotational characteristics of the wheel and the natural modes of vehicle should be investigated and be modified.

Dynamic Characteristics Analysis for the Online Monitoring System Designing KTX MRU and Improvement of the Stability Related Variable High Speed (고속열차 감속기의 상시감시시스템 설계 및 가변속주행시 안정성 향상을 위한 동특성해석)

  • Park, Byung Su;Kim, Jin Woo;Choi, Sang Rak;Song, Young Chun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.301-307
    • /
    • 2013
  • MRU(motor reduction unit) for KTX is a assembled complex structure that is equipped with a lot of parts at the express train KTX and that is the core power source operating variable speeds. This study is recorded the dynamic characteristics analysis results tested by EMA which is done through the parts and assembly test, transient analysis and stoped train test in order to design the online monitoring system for KTX MRU. And the mode shapes result from critical vibration frequency explain the relation with variable speeds of express train over 250 km/hr. Also these variable speeds make variable operational frequencies at pinion, axle gear mesh frequency and normal bearing fault frequencies. As the specified speed can make resonance with natural frequencies of the MRU, for the train operating stability, this study also presents the MRU's critical speeds calculated by the each train speed.

Tonality Design for Sound Quality Evaluation for Gear Whine Sound (승합차량의 액슬기어 음질의 평가를 위한 새로운 순음도 모델 개발과 응용)

  • Kim, Eui-Youl;Jang, Ji-Uk;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1172-1183
    • /
    • 2012
  • Aure's tonality was considered as the sound metrics for the expression of the tonality of gear whine sound in a previous research. It was failed to use the Aure's tonality as a sound metric for the tonal impression. Thus Aures's tonality, was developed for tonal impression in previous research. However, this metric did not express well the tonality of gear whine sound since the whine sound is a non-stationary signal with frequency modulation and amplitude modulation. In this study, the new method for the tonality evaluation for a non-stationary signal is presented. It is developed based on the prominence ratio, tonality impression function, and lower threshold level. It improves the accuracy and reliability of the sound quality index being used for the sound quality evaluation of the axle-gear whine sound.