• Title/Summary/Keyword: Axial-Flow Compressor

Search Result 124, Processing Time 0.02 seconds

The Comparison of Performance of Turbulence Model for a Transonic Axial Compressor Rotor (천음속 축류 압축기 동익의 유동장에 대한 난류 모델의 성능비교)

  • Han, Yong-Jin;Kim, Kwang-Yong;Ko, Sung-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.209-214
    • /
    • 2002
  • The present study is to compare the performance of turbulence models in the analysis of the complex flowfield of an axial flow compressor. Baldwin-Lomax turbulence model and k-$\omega$ turbulence model were selected for the comparison. The thin-layer Wavier-Stokes equation was calculated by explicit, finite-difference numerical scheme. A spatially-varying time-step and an implicit residual smoothing were used to improve convergence. Experimental measurements for NASA rotor 37 were cited fer the comparison with numerical data. The compared two turbulence models gave similar performance over all except for total pressure.

  • PDF

Design of Two Stage Axial Compressor of a Turbo Shaft Engine for Helicopters (헬리콥터용 터보샤프트엔진 2단 축류압축기 개량설계)

  • Kim, Jin-Han;Kim, Chun-Taek;Lee, Dae-Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.183-190
    • /
    • 1998
  • This paper introduces the part of efforts to develop a derivative type turbo-shaft engine from an existing baseline engine for multi-purpose helicopters targeting at 4000kg of take-off weight for 10-12 passengers. As a first step in meeting the development goal of increasing the output power to 840hp from 720hp with minimum modification, two stage axial compressor was redesigned to obtain the higher pressure ratio by removing the inlet guide vane and increasing the chord length. As a result, two stage axial compressors were designed to have the flow rate of 3.04 kg/s, the pressure ratio of 2.01 and the adiabatic efficiency of $85\%$. Its performance tests were carried out and verification of test results and redesign are under progress. Aerodynamic and structural analyses of the preliminary design are mainly described in this paper.

  • PDF

Development of Low Pressure Axial Compressor Performance Test Rig (1단 저압 축류압축기 성능시험리그 개발)

  • Yang, Jae-Jun;Bang, Jeong-Suk;Rhee, Byung-Ho;Park, Tae-Choon;Kang, Young-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.977-980
    • /
    • 2011
  • In this paper, explain to development of low pressure axial compressor performance test rig in KARI. Performance test rig consist of a entrance section, rotor, stator, shaft, rig housing, bearing housing and exit section. Test rig design structural optimization to rotor dynamics analysis of the simplified rotor-shaft assembly and flow analysis of entrance/exit section.

  • PDF

Effect of Surface Roughness on Performance of Axial Compressor Blade (축류압축기 블레이드의 표면조도가 성능에 미치는 영향)

  • Samad, Abdus;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.9-16
    • /
    • 2007
  • Deterioration of surface of turbomachinery blades occurs in course of time due to many factors and hence reduces the performance of the machine. In this paper, the effects of surface roughness of transonic axial compressor blade on performance are studied considering a reference blade and a shape distorted (optimized) blade. Optimal blade is designed considering sweep and lean. Baldwin-Lomax turbulence model is used for flow field analysis and Cebeci-Smith roughness model is formulated for roughness modeling. It is found that, as the surface roughness increases, adiabatic efficiency, total temperature ratio and total pressure ratio decrease while Mach number increases. Performance deterioration is more severe in case of distorted blade as compared to reference blade.

Shape Optimization of Swept, Leaned, and Skewed Blades in a Transonic Axial Compressor for Enhancing Rotor Efficiency (효율 향상을 위한 축류 압축기 동익의 스윕, 린, 스큐각의 형상 최적화)

  • Jang, Choon-Man;Samad, Abdus;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.525-532
    • /
    • 2005
  • Shape optimization of a transonic axial compressor rotor operating at the design flow condition has been performed using response surface method and three-dimensional Navier-Stokes analysis. Three design variables of blade sweep. lean and skew are introduced to optimize the three-dimensional stacking line of the rotor blade. The object function of the shape optimization is selected as an adiabatic efficiency. Throughout the shape optimization of the rotor. the adiabatic efficiency is increased by reducing the tub comer and tip losses. Separation line due to the interference between a passage shock and surface boundary layer on the blade suction surface is moved downstream for the optimized blade compared to the reference one.

  • PDF

Design Optimization of a Single-Stage Transonic Axial Compressor and Test Evaluation of Its Aerodynamic Performance (1단 천음속 축류압축기의 최적 설계 및 공력 성능 시험 평가)

  • Park, Tae Choon;Kang, Young-Seok;Hwang, Oh-Sik;Song, Ji-Han;Lim, Byeung Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.77-84
    • /
    • 2012
  • The aerodynamic performance of a single-stage transonic axial compressor was experimentally evaluated by measuring pressure and temperature distribution at the inlet and outlet of the compressor. The compressor was developed by Korea Aerospace Research Institute through multidisciplinary design optimization (MDO) method, especially integrating aerodynamic performance and structural stability. The test results show that the pressure ratio is 1.65 and the efficiency is 85.8 % at design point, where the corrected speed is 22,000 rpm and the corrected mass flow rate is 15.4 kg/s, and it has a good agreement with the design target and computational results. The distribution of pressure ratio is very steep at design speed, compared with the trend of other subsonic compressors. Also the static pressure distribution on the stator casing shows that the blade loading is gradually increasing through the stage as designed.

Interactive System of Computational Grid Generation for Aerodynamic Design of Axial Flow Compressors (축류압축기의 공력설계를 위한 대화형 계산격자점 생성 프로그램 개발)

  • Chung, Hee-Taeg
    • The KSFM Journal of Fluid Machinery
    • /
    • v.1 no.1 s.1
    • /
    • pp.7-16
    • /
    • 1998
  • An interactive mode of grid generation system has been developed for a Navier-Stokes design procedure of axial flow compressors. The present grid generator adopts the multiblock H-grid structure, which simplifies the creation of computational grids about complex turbomachinery geometries and facilitate the manipulation of multiple grid blocks for multirow flow fields. The numerical algorithm adopts the combination of the algebraic and elliptic method to create the internal grids efficiently and quickly. The system consists of four separated modules, which are linked together with a common graphical user interface. The system input is made of the results of the preliminary design. The final grids generated from each module of the system are used as the preprocessor for the performance prediction of the two-or three-dimensional flow simulation inside the blade passage. Application to the blade design of the LP compressor was demonstrated to be very reliable and practical in support of design activities. This customized system are coupled strongly with the design procedure of the turbomachinery cascades using the Navier-Stokes technique.

  • PDF

A Study on the Fundamental Surge Frequencies in Multi-Stage Axial Flow Compressor Systems

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.4
    • /
    • pp.160-173
    • /
    • 2014
  • Surge phenomena in multi-stage axial flow compressors were studied with attention to the frequency behaviors. A new parameter "volume-modified reduced surge frequency" was introduced, which took into consideration the essential surge process, i.e., emptying and filling of the working gas in the delivery plenum. The behaviors of the relative surge frequencies at the stall stagnation boundaries, compared with the corresponding duct resonance frequencies, have demonstrated the existence of two types of surges; i.e., a near-resonant surge and a subharmonic surge. The former, which has fundamentally a near-resonance frequency, occurs predominantly at the stall stagnation boundary for the short -and-fat plenum delivery flow-path and the long-and-narrow delivery duct flow-path, and possibly in the intermediate conditions. The latter, which has a subharmonic frequency of the fundamental near-resonant one and occurs mainly in the intermediate zone, is considered to be caused by the reduced frequency restricted to a limited range. In relation with those dimensionless frequencies at the stall stagnation boundary, the surge frequency behaviors in more general situations away from the boundaries could be estimated, though very roughly.

A Numerical Study of Shock Wave/Boundary Layer Interaction in a Supersonic Compressor Cascade

  • Song, Dong-Joo;Hwang, Hyun-Chul;Kim, Young-In
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.366-373
    • /
    • 2001
  • A numerical analysis of shock wave/boundary layer interaction in transonic/supersonic axial flow compressor cascade has been performed by using a characteristics upwind Navier-Stokes method with various turbulence models. Two equation turbulence models were applied to transonic/supersonic flows over a NACA 0012 airfoil. The results are superion to those from an algebraic turbulence model. High order TVD schemes predicted shock wave/boundary layer interactions reasonably well. However, the prediction of SWBLI depends more on turbulence models than high order schemes. In a supersonic axial flow cascade at M=1.59 and exit/inlet static pressure ratio of 2.21, k-$\omega$ and Shear Stress Transport (SST) models were numerically stables. However, the k-$\omega$ model predicted thicker shock waves in the flow passage. Losses due to shock/shock and shock/boundary layer interactions in transonic/supersonic compressor flowfields can be higher losses than viscous losses due to flow separation and viscous dissipation.

  • PDF

Performance Assessment of MDO Optimized 1-Stage Axial Compressor (MDO 최적화 설계기법을 이용해 설계된 1단 축류형 압축기의 성능평가)

  • Kang, Young-Seok;Park, Tae-Choon;Yang, Soo-Seok;Lee, Sae-Il;Lee, Dong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.397-400
    • /
    • 2011
  • MDO Optimization for a low pressure axial compressor rotor has been carried out to improve aerodynamic performance and structural stability. Global optimized solution was obtained from an artificial neural network model with genetic algorithm. Optimized rotor model has a high blade loading near hub and near zero incidence flow angle near tip region to reduce the incidence loss and flow separation at trailing edge region. Also the rotor shape is converged to a trapezoid shape to reduce the maximum stress occurred at the root of the blade. Numerical simulation results show that rotor has 87.6% rotor efficiency and safety factor over than 3.

  • PDF